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Abstract

Boreal peatlands grow slow, thus tracking the spatial vegetation pattern development within a peatland requires a long
time. One way of analysing pattern development, without taking the expected long time, is by using a chronosequence.
This method can be used in an area where land emerges due to glacial rebound and new peatlands develop, such
as northern Sweden. These peatland patterns are made up of densely vegetated ridges (hummock), interspersed
with sparsely vegetated pools (hollows). This research used high-resolution aerial imagery to classify peatlands
in five land cover classes, after which the classified hummock patches were used to analyse pattern development.
The age of peatlands was based on the elevation and isostatic rebound, so when the peatland was located on the
shoreline. The patterns were quantified with pattern metrics and correlated with terrain characteristics in generalised
additive models (GAMs). Overall, this research found that hummock patches start small in young peatlands, and
grow together to form long, broad patches as the peatland ages (taking at least 2000 years), however, this does not
occur in all peatlands. The minor & major range and the radius of gyration (the mean distance between each cell
in a patch and a patch centroid) had the highest correlations with age (r2 = 0.263, 0.214 and 0.128, respectively).
The total catchment area above a peatland had the highest correlation of the terrain characteristics (r2 = 0.397).
Factors that contributed to the low R-squared are the location and the number of sampling points. In conclusion, it
is possible to analyse spatial vegetation pattern development by using high-resolution aerial imagery and pattern metrics.
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1 | Introduction

1.1 Context and background

Peatlands are ecosystems with higher net primary pro-
duction than organic matter decomposition rate on the
long term, leading to the accumulation of a deposit full
of incomplete decomposed organic matter (Wieder, Vitt,
& Benscoter, 2006). Peatlands develop due to four pro-
cesses, the most prevailing being the paludification (or
waterlogging) of drier areas, due to water table rise or
changing climate conditions. The second process is the
gradually filling up of water bodies. The last two are re-
lated to glaciation, with peat forming on freshly uncov-
ered soils due to glacial retreat or isostatic rebound be-
ing the third process, and peat formation on former lake
basins being the fourth (Wieder & Vitt, 2006).

Even though peat layers develop gradually, peat-
lands form a significant global terrestrial pool of or-
ganic matter and carbon (Tuittila et al., 2013). North-
ern peatlands cover just 2 to 3% of the earth’s surface.
However, nearly a third of the world’s terrestrial soil
carbon is stored in these peatlands (Eppinga, Rietkerk,
Wassen, & De Ruiter, 2009; Gorham, 1991; Wieder & Vitt,
2006), meaning their ecological and societal importance
is much bigger than expected for such small surface.
These peatlands are also located in areas that are ex-
pected to have the highest increase in precipitation and
temperature in the next decades (Houghton, Meira Filho,
& Callender, 1995).

Northern peatlands can be divided into fens and
bogs, depending on their hydrology and vegetation (Tuit-
tila et al., 2013), with fens being influenced by ground-
water and bogs only by precipitation (Vitt, Bayley, & Jin,
1995). A succession from fen to bog occurs when the
surface of the peatland rises above the surrounding sur-
face to the point that there is no influence of ground-
water anymore. The peat accumulation increases the
distance between the peat surface and the groundwa-
ter, and compact deeper laying peat material, which de-
creases the permeability. At this point, the vegetation
depends on precipitation for water and nutrients (om-
brotrophic), as the rooting zone becomes more isolated
from the mineral-rich groundwater and soil (Kuhry & Tu-
runen, 2006).

Peatland ecosystems often show spatial vegetation
patterns, such as regular string patterns (Figure 1.1 top)
of densely vegetated ridges (hummocks), perpendicular
to the slope, which are interspersed with sparse vege-
tated pools (hollows). Another example is a maze-like
pattern (Figure 1.1 bottom), which is a matrix of hum-
mocks and hollows without a specific orientation, unlike
string patterns (Rietkerk, Dekker, de Ruiter, & van de Kop-
pel, 2004). The spatial structure of these patterns is de-
fined as patchiness.

Figure 1.1: Hummock-hollow patterns on a slope (top), also
called string patters, and on a flatter area (bottom), also called
maze-like patterns

The patterning itself can be explained by a posi-
tive feedback between plant productivity and ground-
water depth on elevated, drier sites, mainly due to in-
creased production of vascular plants (Rietkerk, Dekker,
de Ruiter, & van de Koppel, 2004). The positive feed-
back is maintained because the vascular plants on hum-
mocks attract nutrient flows in the water, due to differ-
ences in the transpiration rate (Rietkerk, Dekker, Wassen,
Verkroost, & Bierkens, 2004). Although models suggest
that small random hummocks will grow together as a
peatland grows older, due to the positive feedbacks ((Ep-
pinga, De Ruiter, Wassen, & Rietkerk, 2009; Eppinga, Ri-
etkerk, et al., 2009; Rietkerk, Dekker, de Ruiter, & van de
Koppel, 2004), there is insufficient empirical data on how
these patterns form.

As northern peatlands are located in areas that are
expected to have the greatest increase in precipitation
and temperature in the next decades, internal peatland
dynamics may be affected in such a way that peatlands
may switch from sinks to sources of atmospheric car-
bon (Bridgham, Johnston, Pastor, & Updegraff, 1995;
Yu, Campbell, Vitt, & Apps, 2001). However, peatlands
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are quite resilient to changes in climatic conditions (Be-
lyea & Clymo, 2001). Nevertheless, this resilience is
lost when environmental thresholds are passed due to
changes in climate, which in turn may cause a shift to
another stable state, with different surface patterns (Be-
lyea & Malmer, 2004; Eppinga, Rietkerk, et al., 2009).
This transition also results in different rates of carbon
decomposition and sequestration; however, these sys-
tems are not fully understood yet (Belyea & Malmer,
2004). This transition is called a catastrophic shift, when
an ecosystem shifts to an alternate stable state, which is
not quickly reversed or cannot be reversed at all (Kéfi et
al., 2014; Rietkerk, Dekker, de Ruiter, & van de Koppel,
2004).

This catastrophic shift in relation to spatial vege-
tation patterns has been analysed already. Scheffer et
al. (2009) modelled desert vegetation pattern develop-
ment and showed that they become more regular when
a catastrophic shift to a barren state is approaching. If
these patterns change predictably, they may be used as
an early-warning signal for a nearing catastrophic shift.
This raises the question whether peatland vegetation
patterns could also be used as an early-warning signal
for a catastrophic shift.

1.2 Problem description

As previously mentioned, there is a need to understand
the internal dynamics in peatlands with changing envi-
ronmental conditions, observable through spatial vege-
tation patterns (i.e. hummocks and hollows).

One way of understanding the dynamics of pattern
development is by taking core samples of the peat, up
to depths of 2.5 meters (De Vleeschouwer, Chambers,
& Swindles, 2010). However, doing this for a whole
patch of peatland is both time-consuming and very de-
structive, as many cores are needed. Also, the spa-
tial pattern is destroyed and not suitable for reconstruc-
tion. Instead, different aged peatlands along a spatial
chronosequence (a sequence of peatlands that differ in
their profile due to differences in their age, also referred
to as a Spac-for-Time approach) can be analysed, and as
such a larger spatial extent can be examined in a non-
destructive way, at the same time. The chronosequence
allows comparison of the links between vegetation and
the environment (Clarkson, Schipper, & Lehmann, 2004).
Aerial imagery of these differently aged peatlands can
then be used to understand temporal processes. In an
area where new land emerges due to isostatic rebound,
such as Sweden and Finland, this method can be used to
understand the dynamics of vegetation patterning (Tuit-
tila et al., 2013). As mentioned earlier, one of the pro-
cesses of peatland formation is because of land becom-
ing available due to glacial retreat.

In Canada, a study has been done by Klinger
and Short (1996), which studied bog successions in a
chronosequence, in an area with isostatic uplift. The
isostatic uplift causes new land to emerge and changes

the base level, topography and drainage network. Sur-
face hydrology, and to a lesser extent the climate, were
the main factors controlling the development of the low-
lands. In the same peat basin, Glaser, Siegel, Reeve,
Janssens, and Janecky (2004) found that peatland suc-
cession seemed to be driven by the tectonic forces,
rather than climate.

But analysing the patterns is not the only challenge.
Local nutrient concentrations and hydrology behaviour
can also differ from location to location. Hence, when
comparing vegetation patterns, these factors need to be
considered.

Although vegetation patterns can be compared, be-
ing able to quantify these patterns in a way that is re-
producible and accurate is challenging. In part, this is
because of the use of open data, which can have their
limitations such as different spatial resolutions and data
collection moments. Quantification of these spatial pat-
terns can be done with statistics, for example with patch
density, size and shape metrics (McGarigal, Cushman,
Neel, & Ene, 2002). Other statistics are mentioned in
Kéfi et al. (2014), such as spatial variance, and the Fast
Fourier Transform (FFT) (Arrell, Wise, Wood, & Donoghue,
2008).

1.3 Research objective & questions

Peatland vegetation patterns develop through time; how-
ever, it is not fully understood yet what the link is
between vegetation and the environment. Therefore,
the main research objective is to try to understand
vegetation pattern development of northern peatlands
through time, using high-resolution images for a spatial
chronosequence of peatlands.

The hypothesis is that vegetation pattern metrics
can be used to estimate the development of the peat-
land, assuming spatial patterns predictably develop over
time. Based on the objectives and the hypothesis the re-
search questions are:

1. Can aerial images be used to detect spatial vegeta-
tion patterns in peatlands?

2. Do vegetation patterns change when the peatland
grows older?

3. Which vegetation pattern descriptors or metrics
best indicate such changes?

4. Which environmental characteristics influence the
development of spatial vegetation patterns?

1.4 Reading guide

Chapter 2 will provide additional literature which can
help with understanding the various concepts. In Chap-
ter 3 the study area, data description and methodology
are described. Chapter 4 shows the results and Chapter
5 the discussion. The last chapter, Chapter 6, concludes
this thesis.



CHAPTER 2. LITERATURE | 3

2 | Literature

2.1 Swedish peatland landscapes

The area covered by at least half a meter thick peat
stock has been estimated to be around 64.000 km2.
This corresponds to about 15 percent of Sweden’s land
area (StatisticSweden, 2013). The largest peatland ar-
eas are found in northern Sweden (Figure 2.1). Figures
2.2 and 2.3 show what peatlands are look like. These im-
ages show that a peatland landscape consists of lakes,
hummocks, hollows and on the drier, more elevated ar-
eas, forests. In the peatland itself, there are hardly
any trees, with the few occurring trees growing on hum-
mocks. Other vegetation includes short sedge grass,
shrubs and peat mosses.

Figure 2.1: Distribution of peatlands (= Torvmarksförekomst,
brown) in Sweden (Source: Rikstäckande jordartsinformation,
SGU 2011).

Figure 2.2: Photos of peatlands in Västerbotten, Sweden
(Source: http://www.lansstyrelsen.se/Vasterbotten/Sv/djur-
och-natur/skyddad-natur).

2.2 Supervised maximum likelihood

classification of peat

Different classification methods can be adopted for land
cover classification from remote sensing images. Maxi-
mum likelihood assigns pixels to classes, based on their
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Figure 2.3: Example of what a hummock and hollow look
like (Photo courtesy: Mats Nilsson). Note that hummocks are
slightly raised, as compared to hollows.

spectral properties, and requires homogeneous train-
ing regions (Haapanen & Tokola, 2007). In their study,
Haapanen and Tokola (2007) compared peatland clas-
sification based on maximum likelihood (MLC) and a
method that uses spatial continuity in addition to spec-
tral properties (sequential maximum a posteriori, SMAP),
and found that MLC performed slightly better on frag-
mented areas, although SMAP produces unspeckled ar-
eas. Another comparison between classification tech-
niques was made by Poulin, Careau, Rochefort, and
Desrochers (2002), which compared MLC and a weighted
MLC (WMLC). The WMLC takes into account the spatial
autocorrelation among neighbouring pixels. The study
found that both methods had approximately the same
accuracy levels for the overall area. There were differ-
ences in common habitats (better classified by WMLC)
and rare habitats, which were better classified by MLC,
due to WMLC producing more homogenous classification
maps. Both studies classified peatlands with a relatively
coarse spatial resolution: 25x25 and 30x30 meters, re-
spectively. Haapanen and Tokola (2007) used six classes
including forest, forested peatland and treeless peat-
land related classes, while Poulin et al. (2002) used 13
classes, mostly herbs, shrubs and forest-related classes.

What both studies show is that although there are other
methods than MLC, which produce more homogeneous
classification results, there are not always better. Poulin
et al. (2002) mention confusion between three pairs of
habitats, namely between shrubs and herbs, and Haapa-
nen and Tokola (2007) mention that using fewer classes
achieves better overall results, and that the number of
classes depends on the definition of the end-users’ need.

2.3 Landscape metrics

The identification of local anisotropy (different prop-
erties in different directions) can be done by using
Fast Fourier Transforms (FFT) (Bergonnier, Hild, & Roux,
2007), which results in minor and major ranges of
patches, and a measure of anisotropy. Another way to
quantifies the areal extent and spatial distribution of
patches is by using pattern metrics, such as with the
programme FRAGSTATS McGarigal et al. (2002). These
metrics are grouped by area, patch density/size, edge,
shape, core area, nearest neighbour, diversity and inter-
spersion metrics. A list of all specific metrics available
can be found in Table 1 of McGarigal et al. (2002). Kéfi et
al. (2014) summarises how changes in spatial vegetation
patterns can provide early warning signals of approach-
ing catastrophic shifts. The spatial indicators include
quantifying spatial autocorrelation, quantifying spectral
properties by Discrete Fourier Transform (DFT), spatial
variance and spatial skewness, but also patch based in-
dicators such as shapes and sizes of patches.
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3 | Materials and methods

This chapter contains a brief introduction to the study
area, a description of the used datasets and the process-
ing steps used in this research.

3.1 Study area

To establish a chronosequence, an area of isostatic re-
bound is required, which is the case for the Gulf of Both-
nia, the sea between Sweden and Finland. Due to the
availability of field measurements on peatlands, the cho-
sen study area is in the north-eastern province of Väster-
botten in Sweden, located north/north-east of the city
Umeå (63◦ 49’ 42.31" N, 20◦ 15’ 34.99" E). This area re-
ceives an annual average precipitation of 600 mm and
has an average temperature of 2.6 ◦ C (Cimatedata.eu,
n.d.). The specific study area is a transect from the
coastland inwards and covers an area of 30.609 ha (Fig-
ure 3.1). The land cover in this area mainly consists of
forest (23.795 ha) interspersed with many small to large
lakes (983 ha) and peatlands (5.214 ha), with an occa-
sional village (10 ha), agricultural lands (278 ha) and
open fields (326 ha, Table 3.1). The transect rises from
sea level to +260 m.a.s.l. nearly 40 km land inwards and
varies from 5-20 km in width.

Table 3.1: Landcover types within transect, with their area and
percentage of total area.

Land cover Area (ha) Percent of total

Forest 23795 78.5
Peatlands 5214 17.2
Lakes, rivers 983 3.2
Agricultural lands 278 0.9
Open fields 36 0.1
Village/houses 10 0.0

3.2 Datasets

Four main types of data are used in this study, namely:
1) aerial images, which include red, green & blue (RGB)
bands and one infrared (IR) band; 2) a digital elevation
model (DEM); 3) vector maps such as a terrain map ( Ta-
ble 3.1); and 4) field data. Each input will be explained
more in depth in the following paragraphs. All data
sets except the field data can be characterised as open
datasets available to the public and can are available on
the Swedish geoportal website1, which has links to spe-
cific websites such as the Lantmäteriet, the land survey-
ing office. However, some data sets require additional
expenses.

1https://www.geodata.se/en/

Figure 3.1: Transect of the study area near Umeå. From the
coast land inwards the transect is 40 km long. All peatlands in
the area are shown, based on landcover maps from Lantäteriet
(2018).

Administrative boundaries

This dataset includes the country, province and munici-
pality boundaries of Sweden. The administrative bound-
aries have remained the same since 31 December 1999,
with a few adjustments throughout the years, the last
one being on 1 January 2016. This dataset is used only
to clip other data to only the area of interest.

Terrain map

The terrain map is used to identify peatlands, at a
scale of 1: 50 000. Until 2005, information was col-
lected through fieldwork and interpretation of aerial pho-
tographs; now there is no fieldwork anymore.

In the available terrain map, the class called ’Annan
öppen mark utan skogskontur’ refers to open fields with-
out forest and corresponds to peatlands. A significant
part of this research is based on this data, as these peat-
lands are used to clip the areal images and the DEM. The
location accuracy of the peatlands is 15 meters (Lantä-
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Table 3.2: Input data for research, with name, type, provider, data type and acquisition date.

Name Type Provider Data type (Spatial

resolution)

Acquisition date

Administrative
boundaries

Digitised maps Lantmäteriet Polygon -

Terrain map Digitised maps Lantmäteriet Polygon -

Watershed delin-
eation

Digitised maps Sveriges Meteorol-
ogiska och Hydrolo-
giska Institut (SMHI)

Polygon -

RGB Aerial imagery Lantmäteriet Raster (0.5x0.5m) 20 May/21 July
2016

IR Aerial imagery Lantmäteriet Raster (0.5x0.5m) 20 May/21 July
2016

DEM Laser scanning Lantmäteriet Raster (2x2m) 20 May/21 July
2016

Field data Field measure-
ments (location,
elevation, peat
depth and age)

Mats Nilsson (from
SLU)

- 28 September 2008

teriet, 2018), mainly due to the difficulty in judging where
the boundary between peatland and for example forest
is.

Watershed delineation

This data is from the Swedish meteorology and hydrol-
ogy institute (SMHI) and divides Sweden into 50.829 sub-
basins. The catchments are made from manually digi-
tised divides with map elevation curves and water ob-
jects in the background (personal comment Håkan Ols-
son (SMHI), 02-03-2018).

The study area spans two major watersheds, and 44
smaller watersheds (Figure 3.3), with an average area of
12 km2, the smallest being 0.3 km2 and the biggest be-
ing 50 km2, with most being smaller than ten km2 (Lan-
täteriet, 2018).

Aerial images (RGB, IR and DEM)

Sweden has been making regular aerial photographs of
the country since the 1950s, with a few limited areas
photographed since the 1930s. From 2005 onwards, ac-
quisition of the photos happens digitally. Depending on
the location (population and land use), the images are
re-taken every 2 to 10 years.

The RGB, IR and DEM images within the study area
have been acquired from an aeroplane on two dates,
namely 20 May and 21 July of 2016. The spectral
ranges of the bands are 410-610 nm (blue)), 490-680 nm
(green), 590-720 nm (red) and Near IR 690-900 nm (Near
IR). The resolution is 0.5 meters, and tiles of 5x5 km are
available, in the Swedish coordinate system SWEREF 99
RM.

Elevation data is collected with an airborne laser
scanner (LiDAR) and processed to construct a gridded

terrain model, with a resolution of 2 meters. Tiles of
2.5x2.5 km are available, in the Swedish coordinate sys-
tem SWEREF 99 RM.

Field measurements

Field measurements were done by Mats Nilsson, from
the Swedish University of Agricultural Sciences (SLU) in
Umeå, and include the location, elevation and depth of
specific locations within peatlands, as well as the age
(based on C14 dating).

3.3 Processing steps

The methodology for this research is divided into five
main steps, which are described below (Figure 3.2). This
section describes the steps of selecting suitable peat-
lands and aerial imagery preparation, which are even-
tually used for the landcover classification and the anal-
ysis of the pattern and terrain characteristics.

Step 1: Selecting suitable peatlands

In this first step, the terrain map of Sweden is used, to-
gether with a standard ArcMap satellite image base map
for reference, to identify peatlands areas. Then, to se-
lect the peatlands with minimal human influence (such
as drainage, logging or industry), each landcover type (in
the percentage of total area) is calculated per small wa-
tershed, after which the watersheds containing industry
and agriculture are excluded. Minimal human influence
is desirable as patterns may be affected due to this in-
fluence. After knowing where all suitable peatlands are
located, a transect can be made, and the aerial image
tiles can be ordered through Lantmäteriet.
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Figure 3.2: Flowchart showing the steps of the research. Step 4 is an intermediate step, placed inside the box of step 5.
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Figure 3.3: Watershed map of the study area (red) near Umeå,
with in blue the subwatersheds and black the major water-
sheds. The study area contains 2 major watersheds, and 44
subwatersheds.

Next, all forests on the edges of these peatlands are
removed as well, by making an inward buffer of 15 me-
ters on the peatland polygon mask, based on the ac-
curacy of Annan öppen mark utan skogskontur. This
means that part of the peatland is also removed; how-
ever, due to the abundance of peatlands, the total areal
loss is minimal. The advantage is that the landcover
classification will be easier (see Step 3), as there is one
class fewer to classify.

Step 2: Areal imagery preparation

In this step, the suitable peatlands are extracted from
the total extent of the aerial imagery, which is needed
for the landcover classification (Step 3).

First, mosaics are made from the separate DEM, IR
and RGB images (resulting in a total of three mosaics).
Next, these mosaics are clipped to the peatland polygon
(Step 1). The areal images within the study area were ac-
quired on two different dates, each with varying circum-
stances of weather and consequently different light in-
tensities and reflectance’s, meaning a distinction needs
to be made within the mosaics, corresponding with their

acquisition date. Thus, all peatlands are divided by ei-
ther of the two dates (May and July).

The DEM needs one additional step. The elevation of
each cell is compared to the mean elevation of a spec-
ified neighbourhood around that cell, which results in
hummocks and hollows being more visible. This local
DEM is used to estimate local (micro)topography, which
may aid the classification of hummocks and hollows. A
similar workflow can be found in Hesse (2010) and Novák
(2014) for archaeology, however, they used additional
steps.

Step 3: Supervised landcover classification

Once the data was prepared, the landcover classification
could start. This step describes the process of how the
different areal imageries are used.

First, 104 points were distributed over the study
area, per acquisition date dataset (so in total 208
points). These categories are: hummock, hollow, water,
mud bottom and sedge (see Table A.1 in annex A) for the
classification key). The amount of points depends on the
overlap of bands that each category has with another.
Water has the least overlap, while hummocks and hol-
lows have more. Sedge and mud bottom are slightly bet-
ter distinguishable (Annex A).

After randomly dividing these points into training
and validation points (80% and 20%, respectively), a
square buffer with 1 m radius is made around all the
points, which need to contain a homogenous landcover.
The training data set is used for the signature file, the
validation data set is used to assess the accuracy of the
classification.

The local DEM, IR and RGB from Step 2 are used to
make the signature file, which is used to determine the
maximum likelihood of a class for each cell. The sig-
nature is made by determining the spectral properties
and local DEM within the buffer of the training points.
As the training points have a predesignated landcover
category, the spectral properties and local DEM will then
be associated with these categories. Maximum likelihood
classification assigns the pixel to classes based on their
spectral properties (Anderson et al., 2010; Poulin et al.,
2002).

Two signature files were made, one for each acqui-
sition date. In the May dataset, there is still some snow,
meaning an entirely different spectral signature as the
July dataset. Vegetation is also at a different growing
stage, in May there is more water, mud and bare soil as
compared to July when vegetation grows.

The results is a landcover map, as well as a con-
fidence map of the classification. The confidence map
shows 14 levels of confidence, based on the mean vector
of the signature file and the distance of the cells’ value
to this mean. These 14 levels are pre-determined by the
maximum likelihood tool.

To assess the classification results, a confusion ma-
trix is made, as well as Kappa’s statistics (Foody, 2002)
and the accuracy of the classification results, based on
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Table 3.3: Dependent (pattern) and independent (terrain) variables used in analysis step. FFT = Fast Fourier Transfer

Dependent (pattern) Independent (terrain)

FTT FRAGSTATS (grouped) Spatial early warning SAGA GIS

Major Area/density/edge
metrics

mean age negative topographic
openess (100 & 500m)

Minor Shape metrics moran total cathment area positive topographic
openess (100 & 500m)

Aniso Isolation/ proximity
metrics

skewness slope slope length

Angle Contagion/ intersper-
sion metrics

variance aspect downslope gradient
(0.2, 0.5, 1 & 2m)

sdr terrain wetness index flowpathl

the remaining validation points. This whole step is an it-
erative process, mainly through adjustment of the loca-
tion of training points to get better classification results.
This process was stopped when the best Kappa’s statistic
was reached.

Step 4: Calculating peatland age based on DEM

The chronosequence makes it possible to analyse peat-
lands at different locations. However, location alone
does not give an age. The age is needed to be able to
compare pattern development. On the website of the
Swedish geology institute, it is possible to go to a loca-
tion and find out how high the sea level was at a certain
moment in time, which results in a shoreline displace-
ment curve. Two locations have been chosen for this
research, one near the coast, and one 40 km from the
coast, as the two extremes. These extremes include the
highest and lowest rebound rates. An average rebound
curve is made from these two, and the derived equation
is used for the age calculation (Annex C). The age map
ranges from 30 years near the coast to just over 10.000
years at the highest point (Figure 3.4). Berglund (2012)
and Påsse and Daniels (2015) mention similar ages as
the SGU data (Annex C), based on their isostatic rebound
curves.

Step 5: Pattern and terrain analysis

This step uses the landcover classification map from
Step 3, the original DEM from Step 2 and the peatland
mask from Step 1 to quantify vegetation patterns and
terrain characteristics. The final goal of this step is to
find age-pattern relationships.

The terrain characteristics of perfect banded pat-
terns have been used for the analysis, as they were the
easiest to recognise. The age map is reclassified to 20
intervals of 500 years each and clipped with a hummock
landcover map of which the confidence of classification
is 50 percent or higher. A stratified random sampling of
points is then used per age interval. The pattern met-
rics and terrain characteristics of these points are then
analysed with various techniques and programmes (Ta-
ble 4.3). Fast Fourier Transfer (FFT) autocorrelation, spa-

Figure 3.4: Map showing the age of the landscape, based
on calculations with the DEM and the shoreline displacement
curve.

tial early warning matrices and FRAGSTATS metrics will
be calculated for each point, and are dependent on the
terrain, hence will be called dependent variables. The
terrain characteristics are calculated with SAGA GIS in
R (RSAGA package, Brenning (2008)), using the DEM as
input, for the same points, and are called independent
variables (Table 3.3). All the terrain characteristics that
could be calculated were chosen for the analysis. There
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was no preselection of which matrices would be used.
This step will provide a measure of quantifying ’patter-
ness’ -how much and what kind of patterns- in relation
to the environment (i.e. terrain).

A point will have multiple pattern and terrain char-
acteristics. The next step is to fit the independent and
dependent variables in a Generalized Additive Model with
integrated smoothness estimation (GAM), and finally, us-
ing R2 to sort the variables, find the best 100 relation-
ships. The advantage of GAM is that it can deal with
highly nonlinear relationships (Guisan, Edwards Jr, &
Hastie, 2002). Both pattern-age, as well as pattern-
terrain relations, will be quantified in this last step.

Validation

Validation has been done on landcover classification,
and for the youngest peatlands, on age. Landcover
classification has been done by visual inspection of the
classes, and with a confusion matrix, kappa’s statistics
and accuracy assessment. The age has also been cal-
culated for the points of the field data, based on the
shore displacement curve and compared with the mea-
sured age of the field data. The average calculated age
is 270 years (range: 145-356 years) older than what
was measured from the field samples (Figure 3.5). This
means that the calculated age is older than what was
measured.

Figure 3.5: Validation of the calculated shoreline displacement
curve. Calculated values are based on the shoreline displace-
ment curve, the validation values are based on field measure-
ments by Mats Nilsson.
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4 | Results

This chapter will discuss the quality of the land cover
classification and its sensitivity to classification input in
Section 1, as well as the pattern-age relationships in sec-
tion 2.

4.1 Land cover classification

These first results will show examples along the tran-
sect and the classification accuracy. Next, a sensitivity
analysis is shown, where different elevation and spectral
bands were used for the classification.

4.1.1 Peatland patterns along the

chronosequence

As previously mentioned, two separate landcover classi-
fication maps have been prepared. The reason to make
two classification maps was that due to the difference
in acquisition date, spectral characteristics of the im-
ages for these two dates differed and peatland classes
could not be classified based on one signature file. The
resulting classification datasets are not the same size:
the July dataset is almost four times larger than the May
dataset (Table 4.1). The percentage of the area clas-
sified as hummock, hollow and water is comparable in
both classifications. However the mudbottom and sedge
class are not. The May dataset has more mudbottom
than sedge, while July has it the other way. The rea-
son for this difference in the area can be that in May
the vegetation (sedge) has not recovered from the win-
ter period yet, and as such has not grown out of the
mudbottom, in which it grows. The composition of land-
cover also changes for different age classes (Figure 4.2).
As peatlands develop, the amount of sedge decreases,
while hummock increases. Hollows also increase, how-
ever, their percentage of land cover varies a lot with each
age class. The amount of mudbottom remains stable, ex-
cept for the 1000 years. Figure 4.2 also shows that water
is hardly classified at all, only in two age classes.

Table 4.1: Total classified area per category, in pixels, hectare
and percentage of total. The May dataset is smaller than the
July dataset (almost 25%).

May July

Area (ha) % total Area (ha) % total

Hummock 153 23.0 576 29.4
Hollow 119 18.0 398 20.3
Water 4 0.5 2 0.1
Mud 336 50.8 646 33.0
Sedge 51 7.7 336 17.2

TOTAL 662 100 1958 100

The overall result shows large surface areas of hum-
mocks and hollows (Figure 4.1), with a few sedge areas
in the southern part of the transect. It also appears peat-
lands are more extensive in surface area when going
land inwards (and being older). However, this may be
caused by one of the first steps in selecting peatlands
and dividing them up into smaller peatlands. Watershed
boundaries may cut a peatland in half (Figures 4.3g&h),
and peatlands may have been excluded because of a
small parcel of agriculture in the catchment. Near the
coast, there is also more agriculture than farther land
inwards.

Figure 4.2: Landcover (in percentage) per age category of 500
years. Sedge decrease with age while hummocks and hollows
increase.

To evaluate whether patterns occur and how they
change along the transect, five peatland sections of dif-
ferent age groups (8600, 6000, 5100, 3000 and 1800
years old) are subjected to closer inspection (Figure 4.3).
This age is based on the glacial rebound calculation. The
transect was divided into five sections for the five age
categories, and per section, a visual scan was done to
find a representative peatland.

The hummock-hollow patterns are seen clearly by
the red and yellow colours, respectively. On all five RGB
images of the peatlands, there are patterns or hum-
mock patches visible, and in general, these patterns are
well-reproduced on the classification map. Furthermore,
older peatlands (Figures 4.3a-d) seem to have more pat-
terns as compared to the youngest peatland (Figures
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Figure 4.1: Landcover classification over the whole transect. See Annex B for more detailed maps.
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4.3i&j ). The scale of these (older) patterns is also larger
than on younger peatlands.

Going into more detail, the two oldest peatlands
(Figures 4.3a-d) show similar patterning, with thick
bands in string and maze patterns. On the edges, near
the forest, the hummocks either clump together to form
a plateau, or get sparser, and hollows or mudbottoms
remain. The middle-aged peatlands (Figures 4.3e-h)
show fewer hummock bands than in the previous ex-
amples, but they are still present. Another similarity is
the plateau forming near the edges in some cases. On
the other hand, there are more disconnected patches
of hummocks, with much more area classified as hol-
lows and mudbottoms. In the youngest peatland (Figures
4.3i&j) there are no banded patterns of hummocks. In-
stead, there are many small disconnected patches.

4.1.2 Classification accuracy

The overall accuracy of the classification was 100%,
based on 21 validation points for the study area, with a
Kappa statistic of 1 (Annex D). This was the same when
using different local DEMs as input for the classification,
and spectral bands.

Although no misclassification occurred at the points
evaluated, close visual inspection indicates that vegeta-
tion cover type and pattern contain errors outside the
evaluated points. Figure 4.4 shows an example for which
an apparent homogeneous peatland, as can be observed
from the RGB image, is classified in hummock, hollow
and mudbottom classes. One possible reason for this
subdivision is the variation in elevation as represented
by the variation in the local DEM. Homogenous hollows
or mudbottoms are present throughout the area, and the
classification such as the example occurs in half of them.
In the other half, these are classified as homogenous ar-
eas.

A second example is comparable, the RGB image
of Figure 4.5 shows a relatively homogeneous hum-
mock which contains a track, with a slightly lower lo-
cal DEM than the surroundings. The resulting classifi-
cation shows a more substantial hollow cover in the path
through than observed in the RGB imagery. There are not
many peatlands with tracks like these in the study area.
However, there are some drainage canals present in a
few. These are mostly classified as two straight parallel
lines of hummock with sedge in between. This is more
frequent in the southern part (younger peatlands) than
the northern part of the study area, due to more urbani-
sation, but it is still absent in most peatlands.

Finally, a third example shows how the two classifi-
cations merged. Figure 4.6 shows the acquisition date
border with July on the left and May on the right, which
covers one peatland. The water in May appears darker,
whilst it is greener in July due to vegetation growth. The
other vegetation is also greener in July than in May,
which is the remaining snow from the winter. In July,
nearly all vegetation is classified as sedge, while in May
there is much more mudbottom and a few hummocks. In

some places there is a seamless transition, from sedge
to sedge, while other sites have a sharp change from
sedge to hollow. There are only a few areas where the
acquisition date border crosses over peatlands such as
with the example, thus it is not very representative for
the whole study area.

4.1.3 Sensitivity of classification results to

local DEM input: 10 vs. 20 vs. 30 m

The examples from the previous section have shown that
the local DEM influences the classification (Figure 4.6-
4.5). The local DEM indicates local elevation differences
and requires the focal range to be set. To test the sensi-
tivity of this setting, three focal ranges have been used,
namely 10, 20 and 30 meters. In the example peat-
land (Figure 4.7a) hummock strings surround a few small
pools and a mudbottom. Some of these hummocks are
isolated, while other strings come together to form a
plateau, which then gradually changes into forest (top,
left and right of the peatland).

Besides that, the three local DEM inputs show differ-
ent elevation ranges (Figures 4.7b-d), there are similari-
ties. Isolated hummocks are classified the same (Figures
4.7e-g, middle of peatland), and the widths of hummock
strings are comparable, although larger focal ranges re-
sult in broader patterns. On the other hand, small iso-
lated elevation differences are filtered out as well with
larger focal ranges, resulting in less spotty classification
(see centre of peatland). A third difference is where the
individual strings come together to form a plateau (top,
left and right of peatland). With a small focal range, the
local depressions within these plateaus are big enough
to be classified as hollows, while they should be classi-
fied as hummock. Larger values for the focal ranges do
not show this. The classification of hollows is also af-
fected by the focal range, with a larger range leading to
fewer hollows. Finally, the classification of water is dif-
ferent with the different focal ranges (two small water
bodies in middle of peatland).

The actual classification is done with a local DEM
of 30 meters. The majority of the hummock-hollow pat-
terns was the same for the three focal ranges, however,
differences occurred in the more hummock plateaus. Al-
though they are relatively homogeneous, there are still
hollows on them. Another difference is that small focal
ranges will show all microtopography, such as a single
grass sod, which will be classified as hummock. The local
microtopography is filtered out with larger focal ranges.

4.1.4 Different spectral band input: infrared vs.

red

Next, to the local DEM, the selected spectral bands as
classification input also influence the final classification.
This section illustrates how infrared (IR), red (R), or both,
in combination with green, blue and a local DEM of 30
meters on local objects affect the classification.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 4.3: Land cover classification of five peatlands from different age classes throughout the transect: a and b: 8600
years; c and d: 6000 years; e and f: 5100 years; g and h: 3000 years; i and j: 1800 years.

Figure 4.4: Example of landcover classifications with deviating patterns due to local DEM differences in a homogneous peat-
land. From left to right: RGB, classification and local DEM.

Differences are mostly visible in the classification of
water and the homogenous hummock plateaus (Figure
4.8), although differences are not big.

When using red (Figure 4.8b) and the combination
of red and IR (Figure 4.8d), an equal number of pixels are
classified as water, which are divided over a larger and
smaller pool in the centre of the peatland. The classifi-
cation with IR (Figure 4.8c) only shows one pool, which is
also smaller than in the other classifications. The major-
ity of the hummock strings is classified in the same way,
for all three inputs, with comparable widths and lengths.
The variances occur in the more homogenous areas (top,
left and right of the peatland).

Using red results in more homogenous plateaus,
while both IR and the combination of the two show hum-
mocks with hollows in between. Although these plateaus

are present in individual peatlands, they are not as pre-
dominant as shown in Figure 4.8b. One other difference
with the inputs is the sedge class. In the top left of the
images, there is a small stroke of sedge class, which is
largest for the IR based classification and smallest for
the combination.

4.2 Spatial vegetation patterns

throughout the transect

The points that have been selected for the pattern anal-
ysis were based on a hummock classification confidence
of over 50%. Of all the pixels, only 8% of the May dataset
and 4% of the July dataset were classified with over 50%
confidence (Table 4.2) to begin with, for all classes How
much of this is hummock has not been calculated.
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Figure 4.5: Example of landcover classifications with deviating patterns due to local DEM differences. A track is classified as
hummock, which should be classified as hummock for the majority of the area. From left to right: RGB, classification and local
DEM.

Figure 4.6: Example of landcover classifications with deviating patterns due different signature files, July on the left and May
on the right. From left to right: RGB, classification and local DEM.

Table 4.2: Certainty range of classification confidence and
how many pixels were classified in that range. Levels are based
on the maximum likelihood classification tool.

May July

Value Certainty % of total % of total

1 .995 to 1 0.13 0.07
2 0.99 to 0.975 0.12 0.06
3 0.975 to 0.95 0.38 0.21
4 0.95 to 0.9 0.70 0.36
5 0.9 to 0.75 1.43 0.77
6 0.75 to 0.5 5.12 2.70
7 0.5 to 0.25 11.95 6.23
8 0.25 to 0.1 19.61 10.88
9 0.1 to 0.05 19.55 13.99
10 0.05 to 0.025 9.99 9.70
11 0.025 to 0.05 6.91 8.73
12 0.01 to 0.025 6.72 10.91
13 0.005 to 0.01 3.54 6.83
14 <= .005 13.86 28.57

Total 100 100

4.2.1 The minor range development through

time

Despite the vast diversity along the transect, an r2 of
0.26 was obtained between age and minor range of pat-
terning. This metric has the highest correlation with
age. The GAM analysis suggests that the minor range
peaks at an age of around 6-7000 years, after which it
decreases again (Figure 4.9). This indicates that hum-

mock bands increase in width until a maximum width is
achieved, after which it the bands gets narrower as the
peatland gets older. Despite this trend, there is a consid-
erable variety in the data, especially with higher ages.
At the same 6-7000 years peak, the minor range can be
from anywhere between just above 0 as to over 40 me-
ters. Nevertheless, young peatlands don’t have high mi-
nor ranges, meaning this metric can be used to detect
old peatlands.

Not all points are used for this GMA. Data is missing
on minor ranges at ages before 2000 years and between
3000 and 6000 years. That is because of the chosen ra-
dius for the fast Fourier transform (FFT) which is set at 30
meters, and the minor range is calculated with the FFT. A
buffer is placed around the points, and if there are places
with ’no data’ present in the 60 by 60 bounding box the
points are excluded from analysis.

Figure 4.9 further shows what the hummock-hollow
patters look like at specific points. For example, older
peatlands (#85, #98, #110, #91 and #62) show more
bands than young peatlands (#7 and #25). Higher mi-
nor ranges (#85 and #98) also show wider bands than
low minor ranges (#62 and #91).

4.2.2 The radius of gyration development

through time

An r2 of 0.128 was obtained between the standard devi-
ation of the radius of gyration and age (Figure 4.10). The
radius of gyration is the distance between each cell of a
patch and the patch centre. This metric increases with
age according to a linear relation. What this means is
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.7: Influence of different local DEM ranges on classification result of a peatland (a: RGB image), with b: 10m; c: 20m;
and d: 30m focal range. Classification results are shown in e,f and g.

that the patches become bigger as a low radius of gyra-
tion occurs with young peatlands, while older peatlands
have higher values. Although there is a positive relation,
there is variation in the data, although most of the higher
values occur with older peatlands. This GAM has more
points than the previous GAM (Figure 4.10) because this
metric is calculated with a different method that does
not exclude areas with no data.

The classification examples in Figure 4.10 show that
a low radius of gyration is expressed by small patches,
without a specific shape. As the radius value increases
the patches rapidly form banded patterns, which grow in
length as well. However, there are also peatlands be-
tween 3000 and 4000 years old that still have a low ra-
dius of gyration, although there are no older peatlands
with this low value.

4.2.3 The perimeter/area ratio development

through time

The age perimeter-area ratio GAM has an r22 of 0.116,
with a decreasing trendline (Figure 4.11). This metric

shows that older peatlands have lower perimeter-area
ratios than younger peatlands. What this means is that
if the shape of the peatland is kept constant, an increase
in the area will mean a decrease in the perimeter-area
ratio. This can mean that hummock patches grow into
plateaus, or into long, broad hummock bands. High
perimeter-area ratios do result in small patches of a few
pixels.

The classification examples in Figure 4.11 show
that a low parameter/area ratio is expressed by large
patches (#70), however similar ratios can also be ex-
pressed in many connected strings of hummocks (# 29
and #110). Young peatlands have high ratios, which re-
sult in many small, disconnected patches that grow to-
gether as the peatland grows older.

4.2.4 Other age-related metrics

More correlations have been made between pattern met-
rics and age, and all have linear relationships (either
positive or negative). The GAM figures can be found
in Annex E. The Contiguity Index increases with age,
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(a)

(b) (c) (d)

Figure 4.8: Influence of different red spectral bands on classification of a peatland (a: RGB image), with either red (b), infrared
(c) or both (d) as input.

Figure 4.9: Age-Minor range correlation, with 7 field examples. The classification images are 120 meters wide, 60 meters high.
Colours correspond to previous classification legends: red = hummock; yellow = hollow; green = sedge; beige = mudbottom; and
blue = water.
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Figure 4.10: Age-radius of gyration correlation, with 7 field example. The classification images are 120 meters wide, 60 meters
high. Colours correspond to previous classification legends: red = hummock; yellow = hollow; green = sedge; beige = mudbottom;
and blue = water.

Table 4.3: The same metrics that were correlated with age are also correlated with these terrain characteristics . Total catchment
area and slope length have the most correlations. X shows which correlations are presen, - shows no indication. Gyrate = radius of
gyration; para = perimeter/area ratio; contig = contiguity index; LSI = landscape shape index; pladj = percentage of like adjacencies;
ai = aggregation index; np = number of patches.

Gyrate+area Para Contig LSI Pladj+ai+np Minor+major

Total catchment area X X X X X -
Slope length X X X - - -
Openness (positive) X - - - - X
Flowpath length X - - - - -
Aspect - X X - - -
Downslope distance gradient - - - X - X
Slope - - - X - -

meaning patches become more connected, as does the
Percentage of Like Adjacencies, which is 100 when the
landscape is one single patch. The Number of Patches
decreases as peatlands grow older, due to the patches
growing together, which is confirmed by the area in-
creasing. The Landscape Shape Index also decreases,
which reaches a value of one when the landscape con-
sists of a single compact patch.

4.3 Landscape positions of spatial

vegetation patterns

The same metrics that are correlated with age can also
be correlated with terrain characteristics (Table 4.3).
The table shows that the total catchment area above a
peatland is correlated with the most pattern character-
istics (indicated with X ), while slope has the lowest. The
minor and major ranges are only correlated with the ter-
rain openness and downslope gradient. This table is just
meant to give a first impression of possible relations. An-
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Figure 4.11: Age- perimeter/area ratio correlation, with 7 field example. The classification images are 120 meters wide, 60 meters
high. Colours correspond to previous classification legends: red = hummock; yellow = hollow; green = sedge; beige = mudbottom;
and blue = water.

nex F shows additional GAM charts for an illustrational
purpose, with how the metric values can be seen in the
classification map.

Terrain mostly influences the hydrology, and thus
also nutrient flow. What most of these terrain character-
istics indicate is how water flows. Total catchment area,
for example, calculates the flow accumulation based on
the DEM, from highest to lowest cells. Slope length is
also based on the distance from the highest to the lowest
cell: based on neighbouring cells with the steepest gra-
dient, until the slope of a neighbour is less or equal than
the currently processed cell. The Topographic openness
expresses the dominance (positive) or enclosure (nega-
tive) of a landscape location, so how wide a landscape
can be viewed from any position. The downslope dis-
tance gradient quantifies downslope controls on local
drainage. Aspect is not hydrology related though; it
shows the orientation of the slope.
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5 | Discussion

This paper studied whether open-source aerial pho-
tographs can be used as a basis to identify and analyse
spatial vegetation patterns in peatlands. Overall, these
patterns were detectable throughout the transect, which
could then be used to analyse the peatlands, particularly
older peatlands (over 2000 years).

5.1 Peatland age and pattern

development

This study used metrics to quantify the pattern develop-
ment in peatlands. The results show that the minor and
major range were the most important metrics, followed
by the radius of gyration and the perimeter-area ratio
(Figures 4.9, 4.10 & 4.11). The values of these metrics in-
crease as the peatlands increased in age (except for the
perimeter-area ratio, which decreases). The hummock
patches increase in width, length, and area and patches
become less isolated as they grow together.

Pattern change in the Everglades (Florida, USA) was
analysed using length/width and perimeter/area met-
rics (Nungesser, 2011), while a bog in Austria was anal-
ysed using class area, mean patch size, number of
patches, total core area, number of core areas and prox-
imity index (Langanke, Burnett, & Lang, 2007). In Ar-
gentina, Herrera, Laterra, Maceira, Zelaya, and Martínez
(2009) and Argañaraz and Entraigas (2014) used the
largest patch index, mean patch size, patch-size coeffi-
cient of variation, landscape index and Euclidean near-
est neighbour distance to analyse grasslands. This tells
that there are no straightforward metrics for examining
landscapes.

A critical point for the evaluation of the pattern
development is the adopted sampling strategy, which
was to stratify random sample points over the tran-
sect, in age categories of 500 years, on hummocks that
were classified with over 50% confidently (Table 4.2).
Although the peatlands of 2000 years and older had
enough hummock to do this, the younger peatlands did
not. This means that the current sampling strategy does
not consider the young peatlands sufficiently as visually
examining the young peatlands (Figure 4.1) shows that
there are hummocks present. This means that the con-
fidence level of the classification is too low to be consid-
ered acceptable (Table 4.2). A low confidence level can
also mean that the classification itself needs improve-
ment (i.e. the signature file).

So either a different sampling strategy is needed
to include these young peatlands, or young peatlands
did not have enough time yet to develop sufficient hum-
mock patterns that can be classified confidently. In their
study, Mathijssen et al. (2017) examined a peatland in

Finland and found that the whole peatland went through
the same succession phases (from rich fen-poor fen-
bog), however various parts of the peatland transitioned
at separate times. Their peatland started as several
smaller ones, which merged to form a bigger peatland,
with the older centre being poor fen while the outsides
were rich fens. This process took approximately 2000
years, which indicates that the younger peatlands (<
2000 years) in the study area may still be undergoing
this same process. Klinger (1996) also mentions that
succession from forest to bog occurs over a period of at
least 2000 years.

Young peatlands near the coast may still be under-
going this process, but more land inwards there are also
peatlands which have the same visual characteristics as
these young peatlands. But, according to the age cal-
culation, they are recognised as older than 2000 years
(Figure 4.9). This may suggest that peatlands don’t al-
ways follow the same succession path from rich fen to
poor bog, even within the same area. However, there
is a theory in which successional pathways converge
from forest to stable climax bogs (Klinger, Elias, Behan-
Pelletier, & Williams, 1990; Klinger & Short, 1996) mak-
ing this idea is unlikely.

Glaser, Hansen, Siegel, Reeve, and Morin (2004)
mention that the isostatic uplift, rather than climate, was
the principal driver of peatland development in the Hud-
son Bay lowlands, in Canada. The slope is continuously
reduced because of this uplift, changing drainage (or
even impeding it) and river gradients. As a result, new
areas become waterlogged and growth of peat is initi-
ated. Consequently, these new peatlands are classified
as old peatlands because of their location, instead of be-
ing classified as young. Tuittila et al. (2013) also found
that external forces (isostatic rebound) led to different
rates of peatland development on the west coast of Fin-
land, in the Gulf of Bothnia. There is also literature sug-
gesting that speed of succession, and thus hummock-
hollow pattern development, may depend on climate and
catchment hydrology: in cold climates, the fen stage per-
sists, which are usually also old, while bog stages are
reached in warmer climates Väliranta et al. (2017). Con-
sidering that the transect is only 40 km long, this last
theory is unlikely.

Besides the age, there were also terrain character-
istics correlated with pattern metrics (Table 4.3). Many
of these terrain characteristics were somehow related
with each other as well, as could be seen in the simi-
lar GAM trendlines, and the correlation matrix between
pattern metrics and terrain characteristics (Annex G). A
lot of literature mentions the string-like hummock pat-
terns appear on slopes, however, this research found
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that slope did not have the highest correlation (Annex
F). Instead, the total catchment area above peatlands
showed the most correlations with metrics (Table 4.3).
This terrain characteristic does contain aspects of other
terrain characteristics, as a high total catchment area
can only be achieved if all upslope water passes the point
of measurement. Hence the point must be on a slope,
which must be long. Thus, the slope and slope length
are indirectly considered in this characteristic. There are
more terrain characteristics like this, however, this re-
search has not focussed on how they are related, and
which ones complement each other.

5.2 Landcover classification within the

peatlands

Analysing the development of peatlands and their pat-
terns with aerial imagery can be challenging, therefore
within the peatlands, five different classes were defined
for more unambiguous interpretation. As a comparison,
Poulin et al. (2002) used 13 habitat classes for peat-
lands, basing the training sites on three experts who
could recognise patterns on aerial photographs, includ-
ing spruce forest. Anderson et al. (2010) used ten cat-
egories, including woodland and grassland, to classify
peatlands. Although using more classes give more infor-
mation, it also increases the confusion between classes.
In their paper, Poulin et al. (2002) state that three similar
classes seemed easily confused within their study. An-
derson et al. (2010) also mentioned misclassification of
categories, due to similar vegetation types, or features
being smaller than the spatial resolution. In hindsight,
for this research, the mudbottom class would maybe
have been better classified if it was split up into lighter
and darker mudbottom; however, more classes are not
needed.

Determining which locations should be selected for
the signature file of the classification greatly determines
the classification results (Ok & Akyurek, 2011). That is
because each defined class will have their range of val-
ues in the colour spectrum and local DEM. If there are
points of two classes that have overlapping ranges, the
classification procedure will include some confusion as
it needs to decide which of the two classes will be used.
The identification of hummock-hollow patterns in this re-
search is done by adopting a supervised maximum like-
lihood classification. The supervised aspect is related
to the point selections for the signature file, which were
manually placed along the transect. There is a bias to-
wards hummocks in this study, as the points for this cat-
egory were placed and optimised iteratively to include as
many hummocks as possible, while other categories re-
ceived less attention. This is because hummocks are the
focus group for the pattern metric calculations, and they
are the easiest to identify from the aerial imagery visu-
ally. The two sensitivity tests further showed that the lo-
cal DEM in combination with colour (Figure 4.7) had more
influence on the classification than using different spec-

tral bands (infrared/red), especially for the hummocks
(Figure 4.8). This is probably because the classification
points were placed on high values of the local DEM.

Although the classification accuracy was 100%, this
was only based on 21 points. These 21 were randomly
selected from the 104 initial points used for classifica-
tion, and the sample size is expected to be too little.
Therefore, the visual inspection was also done. Through
this, some instances of landcover misclassification have
been found, for example in homogeneous peatlands (Fig-
ures 4.4 & 4.5). The acquisition date of the aerial im-
ages also had an important influence on the classifica-
tion (Figure 4.6), as the greenness between both data
sets is different and two different signature files for the
two different acquisition periods are required to prepare
an accurate classification. Even though the classifica-
tion results were combined eventually, it is easier to use
one acquisition date and focus on that, than trying to
combine.

The classification methodology in this research sug-
gests that supervised MLC is a suitable way to analyse
peatlands. MLC is also considered suitable for peatland
classification by Poulin et al. (2002). All data sources are
maintained and kept up to date by either the Swedish
cadastre of hydrology department. The only involve-
ment is with the supervised sampling strategy for MLC
and the analysing of patterns steps.

5.3 Relevance of this research

This research has shown that pattern development in
peatlands can be recognised and quantified by using
areal imagery, over a large area. Wetland classification
using remote sensing has been done for a long time, but
kicked off after the development of satellite remote sens-
ing (Guo, Li, Sheng, Xu, & Wu, 2017), although most re-
search that used areal imagery was used for small wet-
land areas or used to assess the classification results of
remote sensing techniques with low resolution. However,
for peatlands a fine scale resolution is recommended,
due to the processes and patch sizes (Aplin, 2006), plac-
ing more focus on the use of aerial imagery for peatland
classification. The resolution should be fine enough to
include the studied features, so for studying hummocks
and hollows, the resolution should not be much larger
than 0.5m.

Besides being able to understand the pattern devel-
opment in peatlands, combinations of terrain character-
istic values and pattern metrics can be used to predict
where certain peatlands (i.e. patterns) will be in the land-
scape. If it is then also known which patterns indicate a
nearing catastrophic shift, these peatlands can be priori-
tised for monitoring this process.
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6 | Conclusion & Recommendation

This research aimed to understand the spatial vege-
tation pattern development through time, using high-
resolution images for a chronosequence of peatlands.
These patterns were classified using supervised maxi-
mum likelihood classification and analysed using vari-
ous pattern metrics based on hummock patches. Based
on the results, the aerial images can be used to classify
peatlands into five classes, which can then be quantified
using pattern metrics. The hummock patches start off
as small clumps of patches when the peatland is young,
which grow together to form elongated patches as the
peatland grows older. This can be seen in the aerial
images and its’ classification when going land inwards
from the coast, as well as in the GAM figures. The minor
and major range of the patches had the highest correla-
tion with age, followed by the radius of gyration, which
all increases with age. The fourth best correlation with
age was the perimeter-area ratio, which decreased with
age. Of the used terrain characteristics, the total catch-
ment area above a peatland influences the pattern de-
velopment the most, followed by the slope length above
the peatland. There is a large variation in patterns and
where in the landscape they develop, which also results
in weak relationships.

Although the result showed that patterns change
throughout the transect, the peatlands younger than
2000 years were underrepresented in the applied sam-
pling strategy. This was caused by an insufficient pres-
ence of hummocks in the young peatlands, which were
used in the pattern analysis.

This study was of an explorative nature, i.e. trying to
understand the peatland development through a com-
bination of aerial imagery and pattern metrics. Experi-
ences from the past research and recommendations will
be mentioned here.

I The methodology of this research can show where
potential peatland patterns may develop in the fu-
ture, based on where current hummock patterns are
located in the landscape (i.e. terrain characteristics).
A next step could be to further determine in what ter-
rain characteristic ranges these patterns occur and
to select peatlands within those ranges for further
analysis. This way the young peatlands are included
in the research, even though the hummocks have not
developed yet.

II Furthermore, there is not a lot of validation data
in the form of fieldwork to verify the age of peat-
lands, other than a few locations near the coast.
Datasets on peatland depths in Sweden are available
on https://www.sgu.se/produkter/geologiska-
data/oppna-data/jordarter-oppna-
data/torvlagerfoljder/, which could serve as a
guide for selecting peatlands in future research.
Although the actual age is not given, the dept can
indicate if peat is old or young.

III Finally, although various metrics can be used to anal-
yse the development patterns, peatlands are still
complex systems. Further work should be focussed
on understanding the correlations between various
terrain characteristic that influence the vegetation
pattern development, and which pattern metric com-
binations may best describe the development stage.
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A | Classification key

Table A.1 shows the amount of points used per class, per signature file (104 in total). In addition, it also gives examples
of how each class can be recognised in a RGB image. The distinction between hummocks and hollows is the most
difficult: they can both be similar in yellow colour. However the hummocks are often darker, and are more banded.
Mudbottom is dark as well, however is well distinguishable from water. Sedge is the easiest to recognise, as it is the
only green colour in peatlands (since forest is cut out).

Figure A.1 further shows where various spectral bands of classes overlap. Water is best distinguishable, followed
by mudbottom. Hummocks and hollows show the most overlap.

Table A.1: Classification key used in this study

Class # of points Looks like

Hummock 30

Hollow 30

Mudbottom 20

Water 9

Sedge 15

Figure A.1: Scatterplot of spectral bands for the different classes
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B | Transect

Figure B.1: Transect part 1
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Figure B.2: Transect part 2
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Figure B.3: Transect part 3
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Figure B.4: Transect divided into four parts
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C | Shoreline displacement curves

Figure C.1: Different shoreline displacement curves, from various sources

Figure C.1 shows the different shoreline displacement curves, or age-elevation relationships, of various sources.
A shows the curve from the Swedish geology website, 2 shows the curves from Berglund (2012) and 3 from Påsse and
Daniels (2015)
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D | Confusion matrix

Table D.1 shows the confusion matrix of the classification results using IR, G, B and a local DEM of 30m. 1= hummock,
2=hollow, 3=mudbottom, 4=water and 5=sedge. All classes were correctly classified, with Kappa = 1.

Table D.1: Confusion matrix of classification, using IR, G, B and a local DEM of 30 m.

Reference
1 2 3 4 5

Prediction

1 5 0 0 0 0
2 0 9 0 0 0
3 0 0 2 0 0
4 0 0 0 1 0
5 0 0 0 0 4
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E | Other age related metric GAM charts

Figure E.1 shows other age correlated metrics, namely: Contiguity Index (contig), Percentage of Like Adjacencies
(pladj), area, number of patches (np), and Landscape Shape Index (lsi).

Figure E.1: Different shoreline displacement curves, from various sources
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F | Terrain characteristic GAM figures

Figure F.1: GAM figures of different terrain characteristics
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G | Correlation matrix

Figure G.1 shows a correlation matrix between all the terrain characteristics and pattern metrics. Blue means a high
positive correlation, red means a high negative correlation.

Figure G.1: Correlation matrix of terrain characteristics and pattern metrics


