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Chapter1

General Introduction






1.  Fromtop-down agricultural development...

After gaining independence, governments in sub-Saharan Africa (SSA) have historically
continued to build large-scale public irrigation schemes, where a central authority
supervised tenant farmers (Harrison, 2018; Veldwisch et al., 2009). However, such scheme
designs were primarily focused on meeting the needs of European colonial powers and
increasing cash crop production rather than addressing the food security needs of local
populations (Bjornlund et al., 2020). After independence, African countries inherited these
irrigation systems, with their development accelerating in the 1960s because of investments
from multilateral donors such as the World Bank and African Development Bank (Harmon et
al., 2023; Higginbottom et al., 2021). However, the countries often could not maintain these
systems due to a lack of resources and expertise, resulting in disrepair and abandonment.
These schemes were primarily designed based on engineering considerations and often failed
to achieve their objectives. Smaller-scale public irrigation schemes suffered a similar fate as
they were often built with little consultation with local communities and no consideration for

their traditional farming practices.

Nevertheless, there has been a renewed interest in irrigated agriculture in SSA since the turn
of the century, driven by the need to address agricultural development and food security
challenges (Wiggins & Lankford, 2019). With the projected population of the continent
expected to exceed 2 billion within the next 25 years (Statista, 2022), it is necessary to expand
and intensify irrigation substantially to meet the region’s food requirements without relying
heavily on increased imports by 2050.

This challenge is intensified by the vulnerability of agriculture to climate change, as rainfed
agriculture provides little mitigation against erratic rains and climate shocks. Governments
in SSA are responding to these threats and prospects by setting ambitious targets for
expanding irrigation, increasing farm productivity, and alleviating poverty (African Union,
2020). However, there is a risk in the prevailing narrative that suggests that irrigation
is most effectively managed in schemes that require external expertise, financing, and
engineering (Harrison, 2018), which can be seen in plans for new and rehabilitated schemes
in several countries in SSA. Despite the optimistic prospects of expanding irrigated areas
and promoting economic development and food security, large-scale irrigation projects in
SSA following independence have generally fallen short of achieving the expected benefits.
The underperformance of these projects can be attributed to a range of factors, including
governance deficiencies, recurrent cycles of construction and refurbishment, high costs of
development, inadequate management practices, limited access to rural finance, and the
high expense of fertilisers (Higginbottom et al., 2021; Redicker et al., 2022). Furthermore,
systems focused solely on cultivating low-value cereal crops to ensure food security seldom
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Chapter 1 - General Introduction

generate sufficient funds to sustain themselves (Redicker et al., 2022; van Rooyen et al.,
2017).

Nevertheless, the ambitious targets for irrigated agricultural production set by governments
may be well on their way to being achieved, though not primarily through public schemes.
Smallholder farmers’ own irrigation initiatives are contributing much more to food security

than official statistics show (Woodhouse et al., 2017a).

2. ..tobottom-up irrigation development

Farmers have been driving irrigated agriculture in SSA for a long time by establishing new
areas, expanding existing ones, or improving them (Veldwisch et al., 2019a) without (initial)
external support (Nkoka et al., 2014a). Irrigation furrow systems existed in Kenya, Tanzania,
Zimbabwe, and Mozambique well before colonial times (e.g., Adams & Carter, 1987; Bolding
et al., 1996). These systems were not solely shaped by infrastructure but also influenced by
social and customary networks (Nkoka et al., 2014a). As early as the 1970s and the following
decades, various donor, financial and public agencies were aware of the importance of small-
scale irrigation for food production and promoted it; yet many of these initiatives failed as
they were often not farmer-centred nor context-specific (Harmon et al., 2023).

While government irrigation development policies were often ineffective, farmers kept
taking matters into their own hands. They continued investing in irrigation independently,
often relatively unnoticed by official institutions. Only when researchers highlighted the
widespread dynamics of farmer-led irrigation development was the attention of governments
and development agencies drawn to these grassroots efforts (Harmon et al., 2023). This
development process was named Farmer-led Irrigation Development (FLID), characterised
by farmers all over SSA being the leading actors in initiating, operating, maintaining and
usually constructing irrigation infrastructure, using local materials and ideas to improve
their cropyields and income (Beekman etal., 2014a; de Fraiture & Giordano, 2014; Nkokaetal.,
2014a; Veldwisch et al., 2019a; Woodhouse et al., 2017a). Farmers often adopt a commercially
oriented approach, investing in and managing irrigation infrastructure to enhance their
productivity and income. However, farmers do not operate in isolation. Throughout this
process, they rely on and are influenced by diverse actors, including neighbouring farmers,
agro-dealers, traders, agricultural extension agents, irrigation engineers, administrative
authorities, and local and national policymakers (Woodhouse et al., 2017a). Consequently,
farmers prioritise cultivating high-value (cash) crops like tomato or cabbage, which offer
greater profitability than staple foods. FLID is not a homogenous practice, though, nor is

it an irrigation category. Its extent and nature vary widely depending on the region, crops,
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topography, and socioeconomic conditions (Figure 1). Farmers use a variety of methods to
irrigate their fields, such as weirs to divert water, flood and drainage management, bucket
irrigation or irrigation with small motor pumps (Woodhouse et al., 2017a), primarily to

generate income by selling the produce (De Bont, Liebrand, et al., 2019; Veldwisch et al.,

2019a).
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Figure 1: Locations and situations where FLID is prominent (adopted from Izzi et al., 2021)

3.  Theinvisibility of FLID

While individual smallholder farmers typically cultivate small plots of land, the combined
area under irrigation in SSA is substantial, encompassing hundreds of thousands of hectares
(Beekman et al., 2014a; Venot et al., 2021; Woodhouse et al., 2017a). Irrigation in SSA is
undergoing a noteworthy expansion as a result of FLID-processes. However, this is not always
acknowledged by state agencies, development organisations, or researchers (Beekman et al.,
2014a; De Bont, Liebrand, et al., 2019; Venot et al., 2021), both as a result of its heterogeneity
and due to the common (technical) narrative of what irrigation is. I will briefly explain these
two aspects in the following paragraphs.

The fragmented and small-scale nature of irrigation developed through FLID makes it
challenging for governments to count and detect, leading to under-reporting in official
statistics. An agricultural census (where officials visit almost every field in a country) might
capture this, but this is rarely done (Wiggins & Lankford, 2019). These sporadic measuring
moments also mean that when underperforming schemes are abandoned and disappear, the
non-updated official record still includes it as an irrigated area (Wiggins & Lankford, 2019).
Often, the organisational capacity, budget and/or staff are lacking to monitor large areas and
to fill the databases with up-to-date information on irrigated areas developed by farmers (De
Bont, Liebrand, et al., 2019).
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Chapter 1 - General Introduction

Furthermore, as smallholder farmers often do not conform to developmental ideals and do
not use “modern irrigation technologies”, their practices might be seen as illegal, inferior,
or irrelevant despite their significant contributions to higher-level government goals such
as food security (De Bont et al., 2019). The lack of technical and organisational capacities is
intertwined with the working cultures, narratives, and politics of irrigation development in
SSA, leading to the invisibility of farmer’s initiatives (Venot et al., 2021). Even when public
institutes recognise the existence of smallholder irrigation, it is often perceived as backward
and needing modernisation by external expertise (de Bont & Veldwisch, 2020; Hounkonnou
etal., 2012).

However, the recent publication of the “Farmer-led irrigation development guide” by the
World Bank (Izzi et al., 2021) signifies a shift in perspective, with a growing emphasis on
promoting farmer-led irrigation development within investment portfolios, next to the
continued presence of large-scale irrigation projects (Harmon et al., 2023).

4. Estimating the extent of smallholder irrigation

Gaining insight into farmer-led irrigation development (FLID) dynamics begins with
understanding where, when, and how much area farmers irrigate. However, obtaining
this information is challenging due to the fragmented and small-scale nature of irrigated

agriculture and the varied definitions of irrigation.

Over the past decade, multiple studies have investigated the dynamics of FLID and tried
to estimate or extrapolate numbers to regional or national scales. Studies usually involved
interviews (De Bont, Komakech, et al., 2019; Duker et al., 2023) combined with desk studies
(Hornun & Bolwig, 2020), comparing governmental statistics with import numbers on
pumps, for example (de Fraiture & Giordano, 2014; Namara et al., 2014; Woodhouse et al.,
2017a), or participatory mapping with farmers and extension workers (Beekman et al.,
2014a). Although anecdotal and sometimes on relatively small scales (e.g., tens of interviews
or hectares), these studies show that the extent and activities of farmer-led irrigation are
expanding and that the total irrigated area is often more significant than that of the public

irrigation schemes.

However, as it is difficult to do extensive interview studies or collect data over large areas,

these (smaller) anecdotal studies may seem just that, anecdotal.

One alternative and promising approach to map irrigated agriculture over large areas is

by combining satellite imagery and machine learning with field observations. Mapping
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irrigated areas through remote sensing (RS) derived images involves grouping pixels in
the image into classes based on their spectral similarity and dissimilarity. Multispectral RS
uses the principle that different materials (or land cover types) reflect and absorb different
wavelengths of electromagnetic radiation (i.e., sunlight) with varying intensities (Figure 2).
This variation is called a spectral signature and can be used to identify and classify different
land cover types. Satellite sensors measure the reflected or emitted electromagnetic

radiation.
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Figure 2 Example spectral signatures for different land covers (Source: ARSET - Fundamentals of Remote
Sensing | NASA Applied Sciences, n.d.).

The leaves of vegetation strongly absorb visible light, in particular red light (~660 nm) and
blue (~490 nm) and reflect green (~560 nm) and near-infrared light (~830 nm). Our eyes
cannot see the infrared spectrum, so we see healthy vegetation as green. The mapping of
irrigated agriculture in SSA often relies on the distinction between green irrigated crops,
which receive sufficient water, and surrounding vegetation that turns brown or dies off due

to water scarcity in the dry season.

To classify the pixels, machine learning algorithms are often used. These algorithms learn
from a set of training data, which are typically ground-truth data collected and labelled
through field observations. The training data contain examples of different land cover types.
They are used to extract the pixel reflectance values per band for those areas. The machine
learning algorithm then uses these spectral properties per class to recognise patterns in the
data, which it can then apply to the rest of the satellite image to classify all pixels into the
various land cover classes. The resulting thematic map shows the spatial distribution of the

land classes present in the training data.

Several RS-based studies have estimated cropland and irrigated areas in Africa over the past
years at local scale (for example, Fujihara et al., 2020; Magidi et al., 2021; Meier & Mauser,

15
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Chapter 1 - General Introduction

2023; Traoré et al., 2019; Venot et al., 2021; Wellington & Renzullo, 2021) up to the regional
and continental scale (Salmon et al., 2015; Vogels et al., 2019; Xiong et al., 2017). Table 1 shows
some of these studies for the continent and the Horn of Africa to illustrate the wide variety
in total cropland and irrigated area estimated. The table’s primary purpose is not to present
the exact numerical values but to demonstrate that remote sensing-based classification
of irrigated areas is complex. The various producers of these studies employed different
methodologies, including variations in the spatial resolution of the maps, satellite sensor
selection, and algorithmic approaches. Additionally, the studies differ in their interpretation
of what falls under the definition of irrigation. Thus, the table underscores the challenges

and discrepancies in classifying irrigated areas using remote sensing techniques.

Table 1 Examples of continent and regional studies that use remote sensing to classify croplands and

irrigated areas.

Study Product Resolu- Cropland Irriga- Irrigated Year Area

name tion (m) area ted area cropland

(Mha) (Mha) as percen-
tage of total
cropland

Salmon etal. 2015 GRIPC 500 202 13 6% 2015  Africa
Xiongetal. 2017  GFSAD250 250 296 24 8% 2014 Africa
Vogelsetal. 2019 - RSstudy 10 41,67 28 67% 2017 Horn
the study compares by Vogels of
the different etal. 2019 Africa
Prc?ducts and their [aaa 250 50,94 22,39 44% 2010
irrigated area
extent. Globcover 300 37,97 0,0004  0,001% 2009

2009

GRIPC 500 22,08 1,15 5% 2015

GFSAD 1000 1000 9,93 1% 2009

1000

(GIAM)

AQUASTAT variable 24,41 2,33 10%
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5. Problem statement and research questions

Mapping smallholder irrigation in SSA by means of remote sensing imageries has several

challenges due to its heterogeneous and dynamic nature.

Although land cover classes can be distinguished based on spectral signatures, in practice,
there is considerable variation within and overlap between classes when it comes to

measuring irrigated agriculture:

- Differentland cover but a similar spectral signature: instead of directly measuring
irrigation, the measurement relies on the crops’ spectral response to soil moisture.
Typically, irrigated crops appear green, while surrounding natural vegetation turns
brown during the dry season as soil moisture depletes. However, misclassification
can occur in areas with sufficient soil moisture, such as near rivers or wetlands,

where both natural vegetation and irrigated crops may remain green.

- Same land cover but a different spectral signature: spectral signatures of a land
cover can also become mixed when fields contain weeds or different types of crops
or when the spatial resolution of satellite imagery exceeds the size of individual
fields, covering multiple crops or non-cropland vegetation. Moreover, remote

sensing may not detect crops with alow leaf area that are, however, being irrigated.

- Complex shapes and arrangement of fields: the complexity of the landscape
and arrangement of irrigated fields further influence mapping accuracy. Fields
are often small and irregularly shaped, and intercropping practices, variations
in agronomic activities, and differences in planting, harvesting, and irrigation

timings occur.

- Meaning of irrigation: the subjective definition of irrigation can introduce data
collection and classification biases, affecting field and remote sensing-based

statistics.

Despite these challenges, remote sensing presents several advantages for mapping irrigated
agriculture. It offers wide spatial coverage, facilitating the monitoring of trends across different
temporal and spatial scales, particularly in regions where ground-based data is scarce. Remote
sensing assists in prioritising field visits, enables consistent analysis of historical and near-
real-time data, and is easily accessible. Furthermore, distinguishing between different classes
can be achieved by considering factors such as image acquisition timing, vegetation colour

variations, the maximum level of “greenness,” and notable changes such as harvesting.

17



Chapter 1 - General Introduction

This thesis examines the production of RS maps and their ability to recognise and depict
irrigated agriculture. While RS cannot directly measure farmer-led irrigation, it can capture
the diverse and dispersed nature of small-scale irrigated agriculture, which requires
subsequent interpretation through fieldwork and local and expert knowledge. Although RS
offers a promising approach for mapping irrigated agriculture, it is crucial to be aware of
potential pitfalls that might be overlooked. Therefore, this research investigates the mapping
of the spatial-temporal extent of irrigated agriculture in SSA using RS data and how
modelling choices influence these maps. Essentially, this thesis focuses on identifying and
avoiding these pitfalls. To achieve this, the research addresses four key research questions

(RQs) related to the process of irrigation classification:

- RQ1: How have recent RS-based irrigation mapping projects in SSA consciously
and unconsciously defined and classified irrigated agriculture, and how do these
choices impact irrigation mapping?

- RQ2: How does the selection of algorithms and composite lengths influence the
accuracy of predicting irrigated agriculture in various landscapes and cropping

systems?

- RQ3: How does the size and composition of training data impact the accuracy of

predicting irrigated agriculture in diverse landscapes and cropping systems?

- RQ4:What approaches can enable the successful application of models trained on

one area to other areas, minimising the need for extensive field data collection?

To reach the aim of this research, I use four case studies in Mozambique, Chokwe and Xai-
Xai in Gaza province and Manica and Catandica in Manica province. These areas were chosen
for their diverse agroecological characteristics and the presence of irrigated agriculture,
including small-scale and large-scale systems. These characteristics make them a suitable

playground for investigating irrigated agriculture mapping.

The next section further elaborates on the challenges, and Section 7 outlines the remaining
chapters of this thesis.
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6. Conceptualisation of research objective: uncertainties in
RS-based estimates

Although Figure 2 indicates the basic differences in reflection based on which different land
cover classes can be distinguished, there is a lot of variation and overlap between and within
classes. Additionally, satellite sensors do not measure irrigated agriculture itself; instead,

satellites measure the crops’ spectral response to sufficient soil moisture.

Thisisone of the primary sources of confusionbetween classesindicatingirrigated agriculture
and natural vegetation — it is assumed that irrigated crops remain green in periods when the
surrounding natural vegetation dies off and turns brown. However, in areas with sufficient
soil moisture, such as near rivers or wetlands, the natural vegetation will also remain green

and potentially be classified as irrigated agriculture.

To overcome this, the timing of the used images and statistics over the growing periods
becomes relevant, allowing for the distinction between irrigated croplands and the
surrounding natural vegetation. In other words, aspects such as how fast the greening and
browning of corps versus surrounding vegetation happens, the maximum ‘greenness’, or
abrupt changes (such as harvesting) can be used to distinguish classes with similar spectral
signatures further.

Although this in itself is challenging, mapping smallholder adds multiple dimensions due to
the heterogeneous and dynamic nature of FLID processes, including the small, irregularly
shaped fields with in-class variance as a result of inter- and mix-cropping systems and
variability in the timing of agronomic activities such as planting, harvesting, and irrigation
(Bey et al., 2020; Nabil et al., 2020; Rufin et al., 2022). I will show this with a few examples in
the following four subsections (based on Weitkamp & Beekman (2022)).

6.1. Spectral signatures

Inaworld optimal for RS, allirrigated fields would be kept free of weeds, and clear boundaries
between crop types and surrounding vegetation would be visible, as the four images below
show (Figure 3). Each (section of the) field has its own crop, free of weeds. The beans in Figure
3A have a different green hue (i.e., spectral signature) than the lettuce in Figure 3B or the
cabbage in Figure 3C. This is also visible in Figure 3D, where three crops are visible and can
be easily distinguished by the naked eye. The spectral signatures of each crop type are more

clearly defined this way and more unique (i.e., less overlap).
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Chapter 1 - General Introduction

Figure 3 Fields clear of weeds have purer spectral signatures and ave easier to identify with RS. A) beans,

B) lettuce, C) cabbage, D) tomato (foreground left), maise (foreground right) and cabbage (background).
Photos by Timon Weitkamp.

However, this ideal scenario is not always the case. In some instances, fields contain more
weeds than crops, as illustrated in the following four photos featuring croplands of beans,
cabbage, maise, and pumpkin with a considerable weed presence (Figure 4). It is not
difficult to imagine the confusion between the four fields. Additionally, some farmers have
agroforestry systems in which multiple crops and trees are grown on the same field, leading
to even more confusion. In contrast to the “pure” spectral signature of the fields shown
earlier in Figure 3, the spectral signatures of the weedy or multi-crop fields appear more
“mixed,” with greater overlap between them. Essentially, multiple “crop-weed” or “crop-crop”

combinations lead to the same spectral signature.

A further complication in class confusion is natural vegetation areas, which contain the
same weeds present in agricultural fields besides larger shrubs and trees (Figure 5). If the
agricultural fields contain enough weeds or the crop’s green hue is similar to that of a weed,

the spectral signature will be similar to that of natural vegetation.
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Figure 4 These fields contain many weeds and mix the spectral signature; consequently, these fields are
harder to recognise as croplands by machine learning algorithms. Beside weeds, these fields contain beans
(A), cabbage (B), maise (C), and pumpkin (D). Photos by Timon Weitkamp.

Figure 5 A) Natural vegetation can have the identical spectral signatures as croplands with mixed signatures

(i.e., fields with many weeds). B) Natural vegetation grows on fallow fields (old maise stalks visible on the
ground). Photos by Timon Weitkamp.
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6.2. Spatial resolution

The above examples demonstrate that different classes can possess overlapping characteristics
but also that similar classes can possess different characteristics. In addition to the type of
vegetation being classified, pixel coverage is also crucial. The following two fields (Figure
6) are smaller than the smallest open-source pixel size (Sentinel-2, 10x10 meter), which
implies that the pixel includes non-cropland vegetation (with mixed spectral signatures).
Another consideration is that the field may not be covered by a single pixel in the first place
but by part of two or more pixels, further “diluting” the spectral signature of the crop with
non-crop characteristics. In Figure 64, this includes the stream and banana plant in the
background within the pixel. In Figure 6B, a single pixel may cover parts of two different
fields with different crops, further mixing the spectral signature as one crop may be planted

or harvested at a different time or have a different growing length.

Figure 6 Pixels covering small fields contain more non-crop spectral signatures. A) The stream and banana

plant and B) multiple crops will also be covered by the pixel classified as irrigated agriculture. Photos by
Timon Weitkamp.

Additionally, the shape of irrigated fields and their spatial arrangement (clustered or with
non-cropland classes in between), or the complexity of the landscape, influence how easy it

is to map irrigated agriculture (Meier & Mauser, 2023).

Figure 7 demonstrates how spatial resolution affects the visibility of four fields with different
sizes, shapes, and crops in a 30 x 30-meter area. With a 30 x 30-meter resolution image, only
one dominant field (Field 2) can be seen. When the resolution is increased to 10 x 10-meters,
three additional fields (Fields 1, 3, and 4) become visible, but some fields still dominate the
pixel. Using a 2.5 x 2.5-meter resolution image reveals almost all field contours. In all three
scenarios, the areas of each field are calculated, and as resolution decreases from 30 to 2.5

meters, the area of the dominant field (Field 2) decreases while the other fields’ areas increase.
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The significance of the small and irregular nature of smallholder fields is easily overlooked, as

demonstrated by Figure 7
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Figure 7 How spatial resolution determines if fields can be ‘seen’ or not. The area of fields 1, 3 and 4 are 150 m?

whilst field 2 is 450 m?. Source: own compilation.

6.3. Crop type and soil cover

RS may not always be able to detect all crops; crops in stages without sufficient leaf area may
not be detectable. For instance, the onions shown in Figure 8A do not cover a substantial
portion of the soil, even when maturing. Consequently, a pixel over this area would probably
display as bare soil, as the amount of bare soil in the pixel’s spectral reflectance is greater
than the amount of vegetation. The second image (Figure 8B) depicts cabbage in its early
growth stages in the foreground and background. The satellite image can only pick up this
crop when it has grown for several weeks and covers enough bare soil to affect the spectral
reflectance of that pixel. At the same time, there is a small patch of paprika, which will mix

the signal of the surrounding cabbage pixels.

23



Chapter 1 - General Introduction

Figure 8 Crops with small leaves show as bare soil on satellite images. A) onions have small leaves and do

not cover much of the soil. B) young cabbage does not cover much soil either but will eventually. Photos by

Timon Weitkamp.

6.4. Areaswith high water tables

Another factor that makes RS-based classification of irrigated agricultures challenging is
areas with a high water table. As explained in previous sections, farmers often use buckets,
cans, or furrows to apply water to crops, in addition to the more widely known sprinkler and
drip irrigation. However, there are also areas where excess water needs to be drained before
non-rice crops can be grown. The first two photos in Figure 9 (A and B) depictirrigated regions
near Xai-Xai, Mozambique, that employ canals and sluices for active water management.
During the dry season, these fields can be prepared and sowed with horticulture crops that
thrive in areas with a high water table. However, spectrally speaking, these fields resemble
fallow fields after rice cultivation (Figure 9C), where natural vegetation starts growing during
the dry season, also benefiting from the high water table. Reeds (Figure 9D) also flourish in
water-rich areas and remain green for a long time during the dry season, making them prone

to misclassification as rice.
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Figure 9 Arveas with high water tables also contain much natural vegetation that remains green during the

dry season, like crops. A) Area with high water table. B) Similar area but fields are being prepared and
cropped when sufficiently drained. C) Grassland with ponding water. C) Reeds. Photos by Timon Weitkamp.

6.5. Definition of irrigation

RS analyses rely on using defined categories of land use. Still, FLID often does not align with
these conventional boundaries (Figure 1). The reality of farming practices rarely fits neatly
into these categories (Woodhouse et al., 2017a). Therefore, efforts to generate irrigation data
are heavily influenced by the map makers’ perception of what constitutes irrigation (often
modernistic) rather than truly reflecting actual farming practices (De Bont et al., 2019; Venot
et al., 2021). This applies to both RS-based and field-based data collection methods. Both
field-based and RS-based statistics can be (willingly or not) biased due to human choices.
For instance, official field-based statistics may not account for informal or unauthorised
irrigation systems, while RS-based statistics can be affected by the classification of irrigation
types and methodological choices. Throughout the thesis, I use the word ‘irrigation’ to refer to
any form of (active) water management that involves applying or draining water from fields.
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6.6. Summarising the uncertainties

Mapping irrigated agriculture can be challenging for many reasons, from the (sufficient)
availability of satellite data and processing capacity to the varying landscapes agriculture
takes place into the many interpretations of when irrigation is irrigation. The examples from
the above sub-sections illustrate the heterogeneity of the phenomenon being mapped and
the many considerations it takes to map it. In Figure 10, I have tried to summarise many of
these aspects in a conceptual representation to show the various elements that come together
when using RS for mapping irrigated areas. It also shows that the users have their own set

of elements through which they interpret the map, further complicating the whole interplay.

The main body of this thesis focuses on the individuals responsible for the production of
maps (Production side) and the intended users (Application side) and, to a lesser extent, the
subject being mapped, which in this case is irrigated agriculture (Feature side). The map
maker and user are influenced by overlapping elements, such as their knowledge of the area,
their understanding of what constitutes irrigation and their broader stakes and interests.

However, as these do not coincide, their interpretation of the map will differ.

Furthermore, the map maker’s decision-making process is shaped by various factors,
including available financial resources, time constraints, model selections, data availability,
and institutional guidelines. Conversely, the map user’s perspective is influenced by their
comprehension of the methodologies employed in remote sensing-based map generation
and their familiarity with such maps. This dynamic interaction between the map maker and
the reader can lead to mutual influence. The map maker may align with the user’s objectives,

and the user may gain deeper insights into the intricacies of the map creation process.

Considering this framework, the interrelationship and interplay among the four research
questions become more evident. RQ1 examines the relationship between the mapmaker,
the mapped feature, and their interaction. In contrast, RQ2 focuses on the choices made
regarding models and data in the mapmaking process. RQ3 delves into the practical aspects
of collecting field data and its associated challenges. Lastly, RQ4 investigates the scalability of
models and the transfer of knowledge from one area to another, encompassing both personal

expertise and the insights gained by the model.
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Chapter 1 - General Introduction

7.  Contributions and thesis outline

This thesis consists of six chapters, including this introductory chapter. Chapters 2-5
respectively address the four research questions formulated in the previous section, and the
final chapter (Chapter 6) reflects on the findings of this study.

In Chapter 2, I look at common RS classification steps that all mapping studies go through
and determine the authors’ choices, consciously or unconsciously, based on what was
reported. Specifically, I reviewed literature on studies that mapped irrigated agriculture
in SSA from 2015 to 2022. The overabundance of options and possibilities, such as study
extent, the sensor used, data collection strategies or classes used, made it difficult to
compare the studies directly. To compare the studies, I developed a framework that shows
what classification steps a study goes through and how certain choices might influence/bias
the final results. This allowed me to compare the studies on the classification process and
outcome rather than the exact choices or scripts, as those are context-dependent. Parameter
values used in one area might not be directly applicable to another. However, the logic behind
using those parameter values can be reasoned and transferred. This chapter answers RQ 1:
How have recent RS-based irrigation mapping projects in SSA consciously and unconsciously defined

and classified irrigated agriculture, and how do these choices impact irrigation mapping?

Where in Chapter 2, I examine the information reported in published articles and their
potential biases, in the subsequent two chapters I delve deeper into specific classification
steps to demonstrate how particular modelling choices can directly influence the resulting
outcomes. Specifically, Chapter 3 focuses on the algorithm and satellite data employed, while

Chapter 4 examines the training data aspects in greater detail.

Chapter 3 investigates how four different algorithms and four different satellite data
composite lengths classify irrigated agriculture in four study areas with different climates,
landscapes, and farming practices, which cover various farmer-led agriculture practices
and contexts found in SSA. RQ 2 is answered here: How does the selection of algorithms and
composite lengths influence the accuracy of predicting irrigated agriculture in various landscapes and
cropping systems? To create composite images, multiple satellite observations of a specific
area are merged to form a single, representative image. This merging of measurements from
different observations results in comprehensive datasets, which facilitate detailed analysis
of large areas of interest. Different composite lengths can be created by merging more or
fewer images (i.e., longer or shorter time). In this chapter, I show how different algorithms
and input data result in different maps. However, there are areas of overlap, or ‘hotspots’,
where all models agreed irrigated agriculture could be found. I continue by exploring how

these agreement maps — maps showing how many models classified the pixels as irrigated
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agriculture — can be used to visualise both large-scale and small-scale agriculture, but also
that the combination of models allows for determining which areas are irrigated with greater

certainty.

Despite the comprehensive reporting of the algorithm and input data, the training data
used to train the classification models often has a greater impact on the results obtained.
However, this is hardly reported on. In Chapter 1, I describe how smallholder irrigation
can be underrepresented in data collection due to its often dispersed and dynamic nature
and where it can be found, but also due to the perception of what irrigation is by the data
collector. In Chapter 4, I explore these biases through different scenarios. I examine if fewer
data would yield acceptable results, how the training data composition matters, and what
would happen if the data collection focuses too much on irrigated agriculture. I also describe
a method to determine if the amount of training data is large enough and the composition,
which others can use to determine if further data collection is needed. Here, I answer RQ
3: How does the size and composition of training data impact the accuracy of predicting irrigated

agriculture in diverse landscapes and cropping systems?

Chapters 2-4 each cover specific steps in the classification process within a specific
geographical area, but they do notlook at the useability of the developed models in a different
area. Chapter s, therefore, examines the transferability of models trained in one area and
applied to another. Field data collection is expensive and time-consuming; hence, using
pre-trained models for new areas can be cost-effective. However, unsurprisingly by now, the
heterogeneous landscapes and irrigation practices mean the models likely overlook irrigated
areas when transferring models. In this chapter, I explore if models can be transferred to
areas with different climates and landscapes, but also if combining different features into
one model improves the generalisability of the model — the model has seen more options of
where irrigated agriculture can be found. Although model transfer saves time and effort, it
comes at the cost of accuracy, as there are likely classes in the new area that are not found in
the area on which the model was trained. Hence, I also explore how (dis)similarity in areas
can be expressed and how additional data collection in the most dissimilar areas improves the
final results. This chapter addresses RQ 4: What approaches can enable the successful application of
models trained on one area to other areas, minimising the need for extensive field data collection?

Finally, Chapter 6 gives a summary of the main findings of this thesis. It also delves into the

implications and shortcomings and discusses future research directions.
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Chapter 2 - Towards transparent reporting

1.  Abstract

Irrigation is critical for intensifying and expanding agriculture in sub-Saharan Africa (SSA).
Policymakers increasingly use remote sensing-based techniques to identify previously
unknown irrigated areas. As smallholder irrigation practices in SSA vary widely depending
on the type of crops, plot sizes, irrigation methods and landscapes, how maps are made that
depict their extent becomes more important. We have identified methodological choices
in at least eight essential domains for classification or irrigated agriculture sampling
design, labelling protocol sets of classes, field data collection, predictor variables, algorithm
adequacy, input variables, accuracy assessment, map seasonality, and code and data sharing.
This study demonstrates and systematises how these choices affect classification in a
reporting framework. We found that none of the reviewed articles sufficiently documented
all classification steps when applying the framework. Although the reasons for not reporting
are unknown, the lack of explicitly made choices hampers a proper evaluation of irrigated
agriculture’s extent, particularly smallholder irrigation. Ultimately, this may reinforce the
impression that smallholder irrigation is irrelevant because it does not appear on maps.
Finally, we conclude that sharing extensively documented irrigation mapping methodologies
promotes the adoption of best practices across different regions or countries. Policymakers
and practitioners can learn from successful experiences and avoid repeating mistakes
made in other contexts. This approach advances irrigation practices worldwide by fostering

collaboration and knowledge exchange.
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2. Introduction

Irrigation is critical for both the expansion and intensification of agriculture in sub-Saharan
Africa (SSA) to mitigate erratic climate conditions and reduce dependence on erratic
seasonal rainfall. With a mere 4% of the cultivated area reportedly irrigated (FAO 2021), there
is considerable potential for expanding the irrigated area. On the other hand, statistics on
the extent of smallholder irrigation under-estimate how much land is irrigated (Beekman et
al., 2014b; Veldwisch et al., 2019b; Venot et al., 2021; Woodhouse et al., 2017b).

These smallholder irrigation practices, i.e. irrigation on relatively small farms, are often
initiated, operated, maintained and constructed by local people using local materials and
ideas, referred to as ‘farmer-led irrigation development’ (FLID) (Nkoka et al., 2014b, p. 2), as
opposed to irrigated areas developed or initiated by the state or agro-industries. Irrigation
development by farmers themselves takes place in diverse contexts and is dynamic in nature
(see Box 1), which makes it very difficult for authorities to keep track and stay informed of
its ever-changing extent, often scattered widely and challenging to reach. Invariably, the
responsible institutes do not have the organisational capacity, budget or staff to monitor
large areas (de Bont et al., 2019).

Another reason behind the phenomenon of under-reporting is that these same institutes
often see smallholder farmers’ irrigation practices as illegal, inferior or irrelevant, as they
do not conform to developmental ideals or do not employ ‘modern irrigation technologies’,
even though smallholder farmers vastly contribute to higher-level government goals such
as food security (de Bont et al., 2019). It is often a combination of land lease rights, size
of farms, and water abstraction that allow farmers to irrigate on the boundary margins
between legal and illegal. The state cannot monitor, develop, or support all these farmers
whilst the farmers support local food demands. Thus, the lack of technical and organisational
capacities is intertwined with the working cultures, narratives and politics of irrigation
development in SSA, leading to the invisibility of farmers’ practices (Venot et al., 2021). Even
if public institutes recognise smallholder irrigation, it is often seen as backward and needing
conversion by external expertise (de Bont & Veldwisch, 2020; Hounkonnou et al., 2012).
However, irrigated areas developed by smallholder farmers develop faster and more cost-
efficiently than those developed by external expertise (Beekman et al., 2014b). In fact, the
attitude of investment agencies and donors is changing. For instance, the World Bank is in
the process of recognising the role played by FLID and is developing plans to support it (Izzi
et al., 2021). There is a growing emphasis on promoting farmer-led irrigation development
within investment portfolios, despite the continued presence of large-scale irrigation

projects (Harmon et al., 2023)
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The use of remote sensing (RS) for monitoring smallholder irrigated areas is a progressive
alternative to conventional periodic census surveys, often based on known (permanent) public
and large-scale irrigation systems (Venot et al., 2021). RS can greatly help monitor irrigation,
asit potentially reduces the need for extensive field visits and their associated costs, hardware
and staffing needs. Over the last twenty years, developments in algorithms, the spatial and
temporal resolution of satellite imagery, and the use of time series have improved, boosting
methodological developments (Massari et al., 2021). With RS techniques, modellers can
interpret earth surface reflections to identify agricultural fields, land cover change over time,
specific regions of irrigated agriculture in large landscapes, and information on irrigation
timing (Massari et al., 2021; Ozdogan et al., 2010). However, mapping irrigated lands using
RS is a complex technical process in which the output maps’ accuracy and reliability greatly
depend on how the task is executed (Ozdogan et al., 2010). If irrigation maps are to be
accurate and reliable, it is essential that makers of the map address the following challenges:
1) the interpretation of ‘irrigation, 2) classification of distinct categories of land use and land

cover, and 3) reproducibility and transparency:

1. How modellers and field staff understand and interpret smallholder irrigation
plays a significant role in RS-based classification, just as it does in classifications
based on conventional census surveys. Mapping is a process of interpreting a
reality through a model rather than ‘mirroring’ nature. Accordingly, multiple
interpretations can exist simultaneously (Comber et al., 2005), even for a single
area, solely because modellers and field staff have diverse backgrounds and
experiences. To effectively map irrigated areas, modellers must know when
and where irrigation is applied, which is often site-specific, meaning that the
classification choices are also site-specific (Ozdogan et al., 2010). Both through
field data collection and ground truthing/validation, data-generation processes
reflect modellers’ understanding of what irrigation is (Venot et al., 2021), laying
the basis for irrigation classification. In practice, it is often the interpretation by
the public irrigation institutes that is reflected in maps, as their staff collects the

field observations required for the training of the model.

2. The strongly heterogeneous and dynamic landscapes in which smallholder
irrigation often occurs complicate the distinction between different classes. The
small fields, inter- and mixed-cropping systems, and variability of irrigation
timing, method and quantity can often not be captured through satellite images’
sometimes insufficient spatial and temporal resolution (Bégué et al., 2018;
Veldwisch et al., 2019b). The classification maps depend on categories that are
discrete and mutually exclusive, yet it is challenging to develop categories that
capture a continuous mosaic landscape (Foody, 2021), such as where smallholder
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irrigation and other spectrally similar categories like natural vegetation can be

found.

3. Even when modellers address the above two challenges, the lack of transparency
of choices made in classification studies can significantly limit the usefulness
and uptake of the resulting maps beyond the original study. Modellers need to
make choices during the classification process, which are often subjective and
different for each research project. Therefore, modellers must describe and
acknowledge uncertainty in models and analyse their conceptualisations, values
and assumptions regarding the model’s parameters and construction (Melsen
et al., 2018). This allows modellers to analyse and discuss irrigation data and
data-generation methods in relation to the narratives and politics of irrigation
development in SSA (Venot et al., 2021). In doing so, models will become more
transparent, and the results can be reproduced and validated.

All three processes described above contain mechanisms that may lead to missing out on
irrigated agriculture, particularly irrigation by smallholders. However, there is no easy way

to evaluate if and how irrigated agriculture may have been missed.

This study aims to set a first step in systematically reporting on all the steps that classification
studies go through, starting with smallholder irrigation in SSA. Additionally, we aimed to
take the first step towards promoting systematic reporting on all the classification steps
involved in such studies. We developed a framework that allows modellers, reviewers,
editors, and funders to evaluate if all relevant aspects are reported quickly. We also highlight

in what way underreporting on choices could affect the results.

We first describe how we selected publications that mapped irrigated agriculture in SSA in
recent years (Section 3) and the framework we developed to make modelling choices explicit
(Section 4). We then analyse to what extent recent RS studies on irrigation in SSA report on
these choices (Section 5). In the final sections, we discuss the implications of not reporting

on these steps on irrigation extent and policy (Section 6) and conclude the study in Section 7.

Box 1: Illustration of common smallholder irrigation practices in SSA and how they can
be missed by officials

Furrow irrigation in mountainous areas: Furrow irrigation often uses water diverted from
(semi-)permanent mountain streams and is usually found in mountainous SSA regions.

One stream typically provides water to several furrow irrigation systems, which are often
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interlinked directly or indirectly (seepage or return flows to the stream), resulting in
complex socio-hydrological networks. These systems grow or shrink depending on periods
of more or less than average rainfall, and population dynamics can lead to a reconfiguration

of the furrows changing in time and space.

Pumps from open water and groundwater: Farmers pump water from open water bodies and
shallow groundwater for horticulture production. Over the past 20 years, pumps have
become increasingly available and affordable. Sand river aquifers (groundwater systems
of sandy deposits in river beds) have been used for crop production for many centuries,
although this water source is under-utilised. Depending on the pump’s capacity to
transport water, the fields do not have to be close to the water source. The pump'’s flow also
determines the area that the farmer can irrigate, which can be relatively small for solar-
powered pumps (0.5 ha) to multiple hectares for petrol or electric pumps. Water and energy

costs can limit pump usage.

Shallow groundwater in valley bottoms and well-drained depressions: Farmers also grow crops
(often vegetables) on relatively wet valley bottoms (baixas or dambos) in regions that are
usually dry for a large part of the year. Farmers grow crops for their own consumption,
and for the market, either with residual moisture in the soil or from water in a natural
drain or in shallow wells up to 5 metres deep. Farmers access this water with watering cans/
buckets or pumps (treadle or petrol). There may be too much water during the wet season,
in which case drainage canals are dug. During the dry season, the residual water content

and shallow wells can become low, in which case the cropped area also decreases.

How states and officials in SSA view smallholder irrigation can explain why smallholder
irrigation is often not taken into account (de Bont et al., 2019). FLID is sometimes ignored
by government officials, while it contributes to development goals, such as regional and
national food security. Smallholder farmers make active investments in inputs: they
use pumps, fertilisers, improved seeds and pesticides to increase production. However,
government officials may use a narrow interpretation of ‘good’ irrigation. Good irrigation,
based on the prevailing view, happens when the system is planned, designed, or managed
by a trained engineer, in line with political priorities determined by the government —
often without understanding the relationship between the designed scheme and the
farmers ‘existing use of land and water (Venot et al., 2021, p. 13). This leads to labelling
irrigation systems developed by smallholders as ‘sub-optimal’ and inefficient. It excludes
these areas from the strategy to increase agricultural production and leaves them out of
policy. This contributes to irrigation officials overlooking a rapid and widespread irrigation

development process initiated by small-scale farmers. There are also practical reasons
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why policy does not feature smallholders, namely the weak technical capacity and limited
budgets within government agencies, which reduce the potential to respond adaptively
and instead depend increasingly on standard technological approaches to irrigation
development. Consequently, engineers do not identify the irrigation schemes built by
farmers as adaptive, cost-effective measures, even though they are aware of them (de Bont
etal., 2019). Not recognising the phenomenon, together with a lack of capacity to visit these

areas, excludes smallholder irrigation from the mapping methodology.

Sources: de Bont et al. (2019); Duker et al. (2020); Venot et al. (2021); Woodhouse et al. (2017)

3. Methodology

3.1. Development of a framework for analysis

Although all modellers of (irrigation) classification studies go through roughly the same
steps, they do not always document these steps and the corresponding choices in the final
result. This lack of documentation on the exact methodological choices makes comparing
studies difficult.

We have developed a framework that allows us to compare classification studies that are
methodologically different in multiple ways. The framework focuses on transparency,
reproducibility, and the implications of not reporting on those steps. In this study, we look
for the identification of irrigation as a discrete category. In reality, agricultural practices
combine rainfall and other water sources in various ways, and it is sheer impossible to
distinguish between rainfed and irrigated agriculture strictly. We neither move beyond
the general categorisation of irrigation to recognise different types of irrigation systems or
field application methods such as distinguished in the AQUASTAT database of the Food and
Agriculture Organisation of the United Nations (FAO 2021; see also Venot et al. 2021). Our
understanding of irrigation refers to any form of (active) water management that involves
applying or draining water from fields, independent of the infrastructure used, how it is
applied, or who applies it.

We summarised commonly used classification processes into eight essential steps based
on literature and personal experiences. We then assessed how common preferences could
influence the representation of smallholder irrigation. The assessment of these eight steps
can be found in Annex 1. Each classification step has a key question that can be answered
with ‘fully reported’, ‘partially reported’ and ‘not reported’ to give insight into the choices

reflected in the in different studies.
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By going through the eight classification steps (and their questions), a researcher, modeller
or policymaker can quickly evaluate if and how modelling choices were made explicitly. In
the results section (Section 4), we use this tool to assess existing literature on smallholder
agriculture mapping in SSA to demonstrate its potential for making model choices explicit.

Annex 2 shows the applied framework results.

3.2. Selecting articles

We selected literature on irrigated agriculture classification through the database of Scopus.
Our search focused on the title, abstract and keywords of English-language articles from
2015 to May 202.2. We chose 2015 as this was just before Sentinel 2 was launched and made
it possible to map at a higher spatial and temporal resolution. We followed the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Moher et al., 2009)
method and applied the following criteria:

- LULC mapping (search terms: ‘classification’ OR ‘mapping’).

- Irrigation or irrigated agriculture had to be present as a class (search terms:
‘irrigated agriculture’, ‘irrigation’, OR ‘cropland(s)’).

- Mapping the extent of irrigated agriculture using satellite-derived imagery
(search terms: AND NOT ‘UAV).

We did not include the names of satellite constellations (Sentinel, MODIS, Landsat, etc.) or

the type of RS data (optical, radar) in the search criteria.

We designed an automated general query on Scopus to extract those results that were most
likely to satisfy the selection criteria, which resulted in 646 results. The titles and abstracts
were then screened based on the exclusion criteria stated above, as well as the geographical
location of the study, after which we assessed the full texts, resulting in 22 records for the final
review. ; The geographical location (i.e., study areas not in SSA) or the lack of an irrigation
class were the main reasons for exclusion in this step. After this final step, we included three
articles to the list that were not captured by the query but fit the requirements. These three
articles were known to us through other queries.

We grouped the literature according to their different objectives to highlight the importance
of the ‘irrigatior class to a study:

- Agriculture (n=8): mapping of agriculture (croplands), of which irrigated and
rainfed agriculture are two of the classes.
- Irrigation (n=8): mapping of irrigated agriculture is the main focus.

- LULC (n=3): other land uses/land cover are mapped besides rainfed and irrigated
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agriculture. Generally, there are many classes.
- Other (n=7):1and use is mapped, but the goal is more on the methodology than the

maps.

3.3. Analysis of the papers using the framework

Using the framework and table described in Annexes 1 and 2, we analysed what the 25 articles
reported for each classification step with regard to potentially identifying smallholder
irrigation (Table 1 in the Annex). Note that this framework is not meant to compare the
selected articles with the ‘perfect method’ of mapping irrigated agriculture. Instead, the
framework is used to compare if and how the authors have documented the specific steps,

regardless of whether it is the “right” choice for that situation.

4. Aframework for making modelling choices explicit

Image classification is the process by which a modeller assigns areas with similar spectral
signatures to land use classes, commonly by using classification algorithms. Modellers
typically draw on their individual experience and expertise when making decisions on
processing paths, algorithms and sensors (Khatami et al., 2016). Even though these decisions
have marked influences on the model’s output, they are seldom made explicit. Morales-
Barquero et al. (2019) reviewed 304 papers on how verifiable (i.e., reproducible, transparent,
well documented) the accuracy assessment was. They found that two-thirds insufficiently
reported this aspect. Although the authors note that surveys and interviews are needed to
explore why decisions are not always reported, they also point out, in line with Castilla (2016),
that behaviour will change if editors and reviewers demand better reporting of the choices.
One practical way to do this is with a framework that makes modelling choices explicit.
This section describes the main decisions needed for the different steps of the classification
process and the potential consequences for the visibility of smallholder irrigation, though we
believe the steps can also be applied to broader remote sensing topics.

Most commentators (Foody et al., 2016; Olofsson et al., 2014; S. Stehman & Foody, 2019;
Stehman & Wickham, 2020) argue that RS studies should include three main elements for
rigorous accuracy assessment: sample design, response design and analysis. Elaborating on
these three main elements, we define eight common classification steps grouped into three
overarching elements for reporting (Figure 1): i) training and validation data, ii) model, and

iii) presentation.
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i. Training & validation data
1. Sampling design 2. Sets of classes / 3. Training and validation
Type of sampling design nomenclatures data collection
used and size of training and| | Description and number of Method of training and
validafion dataset classes present. validation data collection
reported on. describad (fieldwork or
digitally).
ii. Model
4, Predictor variables 5. Algorithm
Reason(s) for satellite-derived variables Reason(s) for algorithm choice documented.
documeniad.
iii. Presentation
6. Accuracy 7. Map tempoarality 8. Code and data sharing
Any accuracy metrics and The seasonality is clear from Any link ta repositary of
values reported for the map the map or caption. codes or availability of
and presence or absence of training data statemant.
an error/confusion
matrix.

Figure 1 Framework overview containing the eight steps divided over three elements.

We will first describe the individual steps that make up this framework, after which we will

apply them to the selected articles in Section 5.

4.1.  Element 1: Training & validation data
This first element contains all the preparation steps for the eventual classification related
to training and validation data. It includes information about the classes and field data

collection.

4.1.1. Step1-Sampling design

The sampling design is the protocol for selecting the sample pixels or polygons that will form
the basis of the accuracy assessment (Olofsson et al., 2014). In other words, the sampling
design defines when, where, how many and what type of samples are collected (Elmes et al.,
2020). Stehman and Czaplewski (1998) were among the first to state that modellers should
properly document this to enable the reproducibility of study results. Morales-Barquero et

al. (2019) found that the topic is still relevant. Unfortunately, this is not a priority in most
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classification studies. For example, Ye, Pontius, and Rakshit (2018) found that only one-third

of the 209 articles they reviewed mentioned how samples were selected.

Two main methods of sampling are commonly employed in RS studies: purposive or
opportunistic sampling and probability sampling. With purposive or opportunistic
sampling, samples are collected opportunistically, for example, near a road or in known
areas. The other method is probability sampling (using a simple random, stratified random,
systematic, or clustered design), in which all pixels have an equal chance of being selected.
Both sampling designs are acceptable for training the (machine learning) classification
model; however, a probability sampling design should be used for the accuracy assessment
(validation) (Stehman & Foody, 2019).

The sampling of field data is a trade-off between practicality, such as available time, ease of
travel, access and budget, and representativeness of the classes in the sampling. Accounting
for the spatial and temporal variability in all classes (e.g. how grassland greens and browns
during the year) is essential (Johannsen & Daughtry, 2009), which requires field visits to
understand (step 3). Homogeneous landscapes, such as large agricultural fields, may require
fewer samples and can be more spread out than the complex landscapes where smallholder
agriculture occurs. Although the amount of training data is small compared to the eventual
maps, numerous studies have found that the sample size and quality influence the
classification accuracy more than the algorithm used (Elmes et al., 2020). Large and accurate
training datasets are generally preferable, although they may not always be feasible because
of limited time or access or interpretation constraints (Maxwell et al., 2018).

4.1.2. Step2-Setsof classes

Sets of classes - or nomenclatures — are not standardised, and variations exist because of
political or technical choices (Comber et al., 2004). Consequently, each research on irrigated
agriculture has a slightly different understanding of the concept. Each new context or
research defines its own classes and what they mean, making it hard to compare different
results, and each combination of data and processing methods constrains how those sets of
classes are classified (Baudoux et al., 2021). The set of classes and the spatial resolution of
the map are mutually dependent (Homer et al., 2020). Thus, the class nomenclatures must
be documented, allowing others to understand whether and how smallholder irrigation can

be identified.

Nevertheless, a class definition alone is insufficiently precise to ensure replicability (Yu
et al., 2014). To address this, modellers should document the data creation methods and
share likely sources of error and potential uncertainties (Elmes et al., 2020). Nonetheless,

the uncertainty in training data (if labels are correct) is rarely assessed or reported, and
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the accuracy of datasets is seldom questioned (Foody et al., 2016). In addition, the person
labelling the data can also (un)consciously mislabel it. Equally, they may not recognise
smallholder irrigated areas as a legal form of irrigation, labelling them instead as ‘homestead

gardens’ or ‘uncultivated areas’.

Choosing and defining the sets of classes requires defining sharp boundaries, while the
change in landscape is often gradual. As a result, a pixel often contains a mixture of different
classes. Although each location may have a ‘best’ category, others may also be suitable
(Woodcock & Gopal, 2000). Sharp class boundaries can cause problems when using discrete
class categories (Elmes et al., 2020). Even though agricultural fields have relatively sharp
boundaries between fields and other land covers, pixels covering these boundaries remain
mixed. Boundary pixels may cover part of a field and bushland, both with different spectral
signatures, resulting in this pixel containing mixed spectral responses. Note that this effect
largely depends on the resolution of the satellite imagery. A pixel size of 0.3x0.3 metres (the
size of individual crops) will be less mixed than a pixel of 250x250 metres (the size of many
crops, natural vegetation and non-vegetation classes). Consequently, the spectral response
within the smaller pixel will be from that crop alone (more ‘pure’), whereas the large pixel
will have a mixed signal from multiple types of vegetation and non-vegetation classes. This
influences the class label/sets of classes that can be used — the larger pixels can only cover
general classes, such as cropland, whereas the smaller pixels can contain sub-class labels,

such as cropland — tomato (irrigated).

4.1.3. Step 3-Field data collection

Understanding and defining the relationship between the biophysical variables (such as soil
cover or chlorophyll content) and objects’ spectral responses is essential for selecting variables
to observe and measure in the field and for selecting representative samples (Campbell &

Wynne, 2011). Understanding these relationships best requires data from the field.

The study’s objective will largely determine how often the modeller or data collector will
visit a field. A study that maps the extent of agriculture during a 3-month window may have
enough data during one visit, however making the same map for an 8-month window will
require multiple visits, as the crops are in different phenological stages with different spectral
responses; fields may only be cropped once instead of twice (resulting in fallow fields); and
not all fields will be irrigated throughout the season. A study mapping the annual extent will
require visiting the field multiple times per year for multiple years. Through interviews with
farmers and other (personal) observations, the modeller gets a more in-depth understanding
of when, where and how irrigation occurs. Understanding this irrigation context will
considerably improve the ability to interpret RS data and can positively contribute to the

classification process.
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Besides improving the understanding of spatial and temporal variability and the social
contexts that drive these variations, going into the field also allows for physical field data
collection for training and validation. Improved (open source) technology, such as ODK
(Open Data Kit) Collect (ODK, 2023), makes it possible to gather more data cheaply and easily
with more collectors, which requires a sound sampling design and labelling protocol so that
all collectors have the same understanding. Alternatively, training data is collected digitally
by drawing polygons and using high-resolution images. However, this method is sensitive to
misclassification, as determining the class of mixed pixels is often difficult.

4.2. Element2: Model
This element contains the steps related to the modelling/classification of maps, such as the

algorithm and what satellite data was included.

4.2.1. Step 4- Predictorvariables

The algorithm (step 5) learns how to separate classes based on different (satellite-derived)
predictor variables (this step) and training data (step 3). The main idea behind providing
more variables to the algorithm is to separate the classes better. However, adding too much
information might even decrease the accuracy if insufficient training data characterises the
increased complexity associated with the feature space’s larger dimensionality (Maxwell
et al., 2018). Maxwell et al. (2018) add that even if the accuracy is not decreased, it may be
desirable to use fewer variables to simplify the model, perhaps for reproducibility, simplicity,
or speed. Understanding how the various input variables can describe irrigated agriculture
through field data collection can help the modeller determine which variables are suitable

for the classification.

It is good practice for the modeller to understand how the variables may represent certain
classes. There are hundreds of vegetation indices alone; sometimes, their differences seem
minor. Documenting why a particular variable is included in the model asks the modeller to
consciously consider if that variable is relevant in the first place. A final consideration is that
when the mapped object is smaller than the pixel size, the sensor may not be adequate, such

as when irrigated fields are smaller than the pixel size.

4.2.2. Steps-Algorithm

An algorithm seeks to separate classes into the feature space provided by RS images (Foody,
2021). This model learns how to see different classes based on the input training data,
which can later be applied to areas that need to be classified. Choosing an algorithm for
classification is difficult, not only because there are so many but also because the literature
seems contradictory. A possible explanation is that the different study procedures may

not be comparable (Maxwell et al., 2018). However, even with similar procedures, the ’best’
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algorithm is not easy to determine (Lawrence & Moran, 2015), and the authors suggest

evaluating multiple algorithms.

Comparing results from different studies informs us about the applicability of an algorithm.
However, the most suitable algorithm is case-specific and depends on the classes mapped,
the nature of training data, and the predictor variables (Maxwell et al., 2018) — i.e., all the
previous steps. The algorithm choice may also be based on personal preferences, project
requirements, or software limitations, which should be disclosed as the reason for using the
algorithm. Nevertheless, experimenting with multiple algorithms is needed to determine

the most suitable classifier (Maxwell et al., 2018), and reporting this supports the final choice.

Classification accuracy may also be affected by user-defined parameters of the algorithm.
Although the default values of such parameters can be sufficient, experimenting with
different values is needed to determine that the best classification has been chosen (Maxwell
et al., 2018). Some algorithms require many user-defined parameters to be set, whereas
others only require a few. Parameter settings should be documented even if the default
values are used, as they are often case-specific. As there is no ‘best’ algorithm for mapping
smallholder irrigation, experimenting with different algorithms and parameters and
evaluating the model accuracies and maps is recommended to find which algorithm can
best distinguish irrigated agriculture from other spectrally similar classes. Documenting
these steps will inform others about this; however, note that the reasons behind the higher

classifications remain a mystery in the black box with most algorithms.

4.3. Element 3: Presentation
The final element is about presenting these results, specifically, the map (in combination
with the accuracy assessment), which shows the spatial distribution of all the classes defined

in the first steps.

4.3.1. Step 6 -Accuracy

Different training data sets, classification algorithms and input variables will produce
different results for the same region. Which result to use in the end will depend on assessing
the map’s accuracy and uncertainty (i.e. with a confidence interval), which, besides
indicating the quality of the map, also provides a means to enhance its usefulness (Elmes
et al., 2020; Foody, 2009). Acknowledging potential limitations of the assessment provides
map users with an informed understanding of the results’ accuracy. In contrast, a lack of
transparency would give a false impression of reliability (Stehman & Foody, 2019). These
potential limitations are the considerations and reasoning for choices of the previous steps
and give context to the accuracy assessment.
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A map's accuracy depends on the reference dataset used in its training (G. Foody et al., 2016).
Map accuracy is assessed by evaluating the agreement between the estimated map and those
ofthevalidation data, which is often summarised in the confusion matrix (Elmes etal., 2020).
It shows more than just the accuracy, as a high accuracy can be achieved by merely allocating
all training data to the most abundant class and not considering rare classes, although such
a map would not be of much use (G. M. Foody, 2020; He & Garcia, 2009). The confusion
matrix also shows the accuracy per class, increasing the interpretation of the map’s results
(Foody, 2020). Any research involving classification techniques or maps evaluated exclusively
regarding overall accuracy may be unreliable. Instead, this metric should be used with other

metrics, such as user or producer accuracy (Shao et al., 2019).

4.3.2. Step 7—- Map temporality

This step is relevant for dynamic land classes throughout the year, such as (smallholder)
irrigated agriculture. Irrigated areas increase and decrease in size as the water availability
increases or decreases, which changes during the irrigation season. A map showing the
extent of irrigated agriculture at the start of the irrigation season likely shows more irrigation

than one from the end of the season.

4.3.3. Step 8- Code and data sharing

A lack of transparency in reporting poses credibility issues, which in turn hinder the
comparison and usefulness of maps. This concern becomes more significant with the
increasing complexity and automation of remote sensing analysis across various disciplines
and applications. To address this concern, it is crucial to publish the elements necessary for
accurate assessment (steps 1-6), enabling remote sensing scientists to evaluate the reliability
of new methods and modelling techniques (Morales-Barquero et al., 2019). The availability of
model code and data for scientific practice would increase transparency, facilitate building
on existing theories, and allow testing under different conditions and areas (Melsen et al.,
2017). Together with the use of open-source software and data, a study can genuinely be
reproduced (Elmes et al., 2020; Stehman & Foody, 2019).

In other words, we would be able to know why specific models work better for identifying

irrigated agriculture, independent of the specific case study, rather than only knowing that a

model works, unable to build on that knowledge.
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5.  Analysis of reported modelling choices in recent RS studies
onirrigation in SSA

Following the selection of 25 recent RS studies on irrigation in SSA (Section 3), we analysed
them using our framework for making modelling choices explicit (Section 4). We aimed to
conduct a content analysis of the modelling choices and their implications. However, we
noticed that there is minimal reporting on these choices. We, therefore, start this section
with an analysis of which modelling choices these papers report on, categorised as fully
reported, partially reported (one or more sub-steps missing), and not reported (no information
present). The guidelines for this categorisation can be found in Annex 1. Figure 2 presents
these categories per article (A) and per modelling step (B); details can be found in Annex 2.

Figure 2A reveals that several articles provide scant information on their modelling choices,
rendering them of limited value as we cannot build upon their knowledge effectively. The
only discernible detail is that, under specific circumstances, irrigated agriculture could
be classified. However, we lack insights into the model and data, preventing us from
understanding why the model worked or assessing its accuracy conclusively. Figure 2B
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Figure 2A: Assessment of the modelling steps that the papers reported on. Figure 1B: number of papers that
reported on modelling steps. Modelling steps: 1) Sampling design, 2) Sets of classes, 3) Field data collection,
4) Input variables, 5) Algorithm, 6) Accuracy, 7) Map temporality, 8) Code and data sharing.
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shows that the map temporality, sets of classes and field data collection are most commonly
reported on. In contrast, the code and data sharing, sampling design and input variables are

least reported on.
In the remainder of this section, we describe what information the papers documented.

1. Sampling design
Type of sampling design used and size of training and validation dataset reported on.

Of the 25 papers, only one fully reported on the sampling design: the authors used a
randomised strategy for unbiased samples, with 100 samples per class, and additional
samples were collected for less frequent classes (such as irrigated agriculture), although the
sampling design for the additional samples was not explained. Ten papers partially reported
their sampling design, either opportunistic or random. Opportunistic sampling was used
based on the accessibility of the fields, field size, representativeness of the fields and/or
authors’ knowledge of the area, but there was no information on the number or distribution
of samples. In other cases, the authors provided a map of where samples were taken,
showing sampling near roads (indicating opportunistic methods), or a confusion matrix was
provided later on, but with no reporting on the sampling design. In total, 14 papers did not
clearly report on the number of samples collected and the sampling strategy.

2. Sets of classes
Description and number of classes present.

Seventeen of the articles fully report on the classes and their descriptions; the other eight
articles only present the class names without a description (partial report). All articles had
the “irrigated agriculture” class, but the descriptions varied. For example, “areas equipped
for irrigation” and “areas being green in the dry season” are used, meaning two completely
different things. Areas equipped for irrigation are not necessarily used for irrigation; think
of large irrigation schemes of which only the first fields receive enough water to irrigate,
whereas the other fields do not (but are still equipped for irrigation). The second definition
assumes anything green has to be irrigated agriculture, but areas with high water tables or

near streams are also green during the dry season, creating a source of confusion.

3. Field data collection

Training and validation data collected in-situ or digitally.

Fifteen papers fully reported on data collection (either fieldwork or digital) and their rationale,

namely for understanding the local context, deciding on the classes present, collecting
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reference data, or because the objective was to compare maps over decades. Most data were
collected during the peak cropping season, with either one or multiple visits spread over the
season. Three papers partially reported on this element: two mentioned knowing the area
even though no field data was collected, and one did collect field data but gave no specifics on

this. No articles did not report on any aspect.

4. Predictor variables

Reason(s) for satellite-derived variables documented.

The fourth step is deciding which variables adequately represent the different classes and,
more importantly, allow the algorithm to differentiate these classes. Six papers fully reported
why they used certain variables: from the spatio-temporal resolution of some satellites
suitable for capturing smallholder irrigation (Sentinels) to monitoring land cover changes
requiring a long time series (Landsat). Usually, the NDVI was used because of its suitability
for monitoring vegetation (based on other studies). However, often no alternative indices
were mentioned as tested or mentioned as potentially useful. One paper used the normalised
difference wetness index (NDWI) to separate classes because of the irrigation method (spate
irrigation). Six papers partially reported on the reasoning, whereas 13 papers only mentioned

the use of variables but without reasoning.

5. Algorithm
Reason(s) for algorithm choice documented.

Although all papers document the specific algorithm they used (and sometimes in which
software), they do not always share their reason(s) for selecting a particular algorithm —
only three papers mention that it was based on how suitable the algorithm was deemed for
detecting irrigation. The first paper used a decision tree because of the area’s non-complexity,
based on experimental values for temperature and mean normalised difference vegetation
index (NDVI). The second paper’s author (or authors) based their choice on experiments
with multiple algorithms. The third paper used a knowledge-based method which required
thresholding and local expert knowledge. The authors of six papers partially reported their
choice of algorithm, either based on other studies that use it to classify agriculture (often
random forest) or because it is a common method (maximum likelihood classification). The
remaining 16 papers either gave no reason for using the algorithm or gave general arguments,
such as its common use in RS, ease of understanding the structure, or robustness, without
explicitly mentioning if experiments were done to confirm these reasons. Five articles
discussed their parameter settings; consequently, we can only assume the default settings

were used, which might not be the appropriate settings in those contexts.
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6. Accuracy
Any accuracy metrics and values reported for the map and the presence or absence of an error/confusion

matrix.

Ten papers fully reported the error matrix, either in pixels misclassified or as a total area
percentage. Eight papers reported class-specific accuracies but not confusions between
classes (i.e., no error matrix), and seven reported only the overall accuracy or the kappa
(labelled ‘not reported’). Most papers excluded details such as class-specific accuracy.
Consequently, the quality of a map, particularly in terms of the extent of irrigated agriculture

and its confusion with other classes, can only be fully understood for seven papers.

7. Map temporality
The seasonality is clear from the map or caption.

Nineteen papers fully report the seasonality of the map (either a specific date or a month),
although often, this has to be deduced from when the satellite data or field reference data is
collected. In contrast, three papers partially report on this by only showing a year, making
it unclear if the map shows the maximum extent of irrigated agriculture or perhaps the

minimum. The remaining three papers do not report on this step.

8. Code and data sharing
Any link to the repository of codes or availability of training data statement

No articles shared links to a repository where code and data were available. Four articles
linked to the code used, or could share it on request; however, the vast majority, 21 articles,
did not link to any code or data.

6. Discussion
In this section, we use the three main elements in the framework to interpret our results.

6.1. Element1: Training and validation data

Given that more than half of the reviewed articles lacked adequate reporting on the sampling
design, we are left with mere speculation regarding the sample collection locations and
potential biases. Consequently, the resulting maps have the potential to both overestimate
and underestimate the extent of irrigated agriculture. The outcome largely hinges on the
study’s specific objective (whether it emphasises smallholders or not) and the approach

taken by the data collectors (having a narrow or broad understanding of irrigation).
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Irrigated agriculture might be underestimated when a narrow technical definition of
irrigationis used, dismissing small scattered fields. Policymakers may see untapped potential
based on the map and plan interventions in seemingly unused land. However, on-site
visits might reveal inventive irrigation methods. This mismatch between the policymaker’s
expectations and the actual situation can erode their trust in the map as a reliable tool for
decision-making. As a result, the policymaker might begin to use the map less frequently
or even dismiss its value altogether. The sets of classes are reported in 17 of the 25 reviewed
articles, indicating that most authors see the importance of reporting.

Intotal, 15 of the reviewed articles reported on field data collection. Authors who inadequately
report on field data collection methods fail to reveal the representativeness of their data
concerning local irrigation practices. Relying solely on pre-existing knowledge of known
irrigated areas may result in an inadequate representation of smaller, intricate agricultural
landscapes. Relying on past experiences, assuming that the relationships learned from other
areas apply universally, may lead to overestimating or underestimating irrigated areas due

to the variability of smallholder irrigation across locations and time.

6.2. Element 2: Modelling choices

Our findings reveal that most papers rely on variables based on existing literature,
predominantly NDVI, without reporting on exploring other indices that may be more
suitable for their study area. This prevailing assumption may hinder accurately capturing
complex landscape characteristics, particularly in smallholder farming areas where natural
vegetation may resemble croplands. While feature selection methods exist to filter variables
during the modelling phase, certain variables may prove more sensitive to on-ground
features than others. For example, the normalised difference vegetation index (NDVI) is
commonly used in classification studies. However, it may lack the sensitivity to distinguish
irrigated fields from other vegetation types (Ozdogan et al., 2010). An NDVI value of 0.8 can
be observed in dense forests, grasslands, or well-managed crops. Consequently, the model
faces difficulty differentiating between various classes using NDVI alone. To address this

limitation, additional or other variables may improve the classification.

The algorithm has not been documented in 13 of the 25 articles. Not reporting on the algorithm
mainly limits the reproducibility of the results, i.e., the same map cannot be remade, as the
algorithm and it is parameter values will most likely be different from the one in the original
study. The implication is that the location and extent of irrigated agriculture will differ every
time the model is rerun. Even where data collection and predictor variables are documented,
there will be variation, albeit more limited. The map used as the basis for decision-making
is chosen randomly, as any other variation of the map could have been selected due to the

unknown algorithm settings. This uncertainty diminishes trust in the eventual product.
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6.3. Element 3: Presentation

Ten of the 25 articles reported on multiple accuracy metrics. Smallholderirrigated agriculture
is often considered a rare category due to its relatively small size compared to more common
land-use classes. Studies that overlook class-specific accuracies present a misleading sense
of reliability. However, merely citing (high) accuracy figures does not guarantee quality; this
aspect is frequently misunderstood (Braun, 2021). Braun further asserts that if accuracy
values are accepted uncritically, and the criteria for selecting them in relation to the relevant
image classes are disregarded, it could lead to inflated political significance, particularly
for less common land-use systems. Conversely, low accuracy values for challenging-to-
distinguish classes, such as smallholder irrigation, should not be perceived as failures but as
honest assessments. Attempting to tune accuracy values by arbitrarily aggregating classes or
modifying training sites to meet published thresholds in the literature is ultimately futile. In
such cases, it might be more purposeful to acknowledge that remote sensing may not be the
most suitable approach to address the scientific question at hand, and instead, knowledge

could be better generated by increasing fieldwork if feasible.

Nineteen articles reported on the map temporality, suggesting a somewhat more common

practice.

No article shared both data and code, although four articles shared code. This highlights that
making methods publicly available is not a common practice within the field. It is crucial
to provide the exact code and settings used in the original creation to ensure transparency
and reproducibility. The absence of this information conceals the assumptions made by the
modeller, which may not be evident to users. Additionally, sharing code allows the article
to focus on the implications and interpretation of the map while explicitly referencing
the methods in the code. As a result, the article becomes less of a technical document and

revolves more around discussing the results.

6.4. Implications to irrigation policy and practice of undocumented steps

The inadequate reporting on classification choices, as demonstrated in this study, not only
raises credibility concerns but also hinders the comparability of maps and limits the overall
usefulness of the maps (Morales-Barquero et al., 2019). Consequently, this may perpetuate
the notion that smallholder irrigation is inconsequential, as maps may not adequately
represent it. The modeller’s perspective of irrigation influences the classification process,

and our framework can bring these biases to light.
The representation of an area depends on the choices made during the classification steps.

These choices are not trivial but can have some real-life consequences. RS can be used to

classify ‘under-utilised’ areas (marginal lands), and the maps that are produced can be
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used as a tool for negotiation. For example, Nalepa and Bauer (2012) compared four studies
that used RS to map available land (marginal lands) for biofuel crops (based on biophysical
parameters) for potential investment, but note that these marginal lands are often not as
‘empty’ as the maps show; the RS analyses do not consider the socio-economic dynamics of
those ‘empty’ marginal lands. Consequently, there is a possibility that smallholder farmers
on those marginal lands are pushed to even lower-quality land. There are more examples in
which land has been classified as suitable for certain activities because they were ‘empty’
but were actually in use (e.g. Exner et al. (2015); Nalepa, Short Gianotti, and Bauer (2017)),
illustrating that RS-derived maps can influence perceptions and actions, with (unintended)
consequences for the people living off that land. These papers focused on how RS determines
what land is available (i.e. empty) for large-scale (often foreign) investment, with dire

consequences for the farmers on those lands.

RS has many advantages. Accurate information on the location and extent of smallholders
could play a vital role in providing support when and where needed the most (Izzi et al.,
2021). Investments and interventions in these often-neglected areas can go a long way in
improving the livelihoods of those engaged. This requires knowing their whereabouts
through transparent and reproducible approaches that can be relied upon for progress
monitoring purposes. When classification methods are trained and utilised in one field,
their transferability to other areas becomes smoother when all relevant steps are openly
reported. By sharing the challenges faced and unsuccessful methods, potential obstacles
can be anticipated and avoided, enabling others to learn from the experiences and pursue

alternative approaches.

On the contrary, withholding specific classification steps requires individual mapmakers
to independently experiment and validate methods, which may lead to redundant efforts.
Moreover, it creates a false sense of reliability as crucial information remains undisclosed
(Stehman & Foody, 2019).

6.5. Limitations of the review

The analysis presented in this study has certain limitations that influence the scope of the
results. While we are confident that our analysis was based on a representative sample, it
is important to acknowledge that search strategies involve a degree of subjectivity. Due
to the vast extent of land cover mapping literature, we cannot dismiss the possibility that
employing a different set of keywords and combinations could have resulted in a varied
literature sample, potentially leading to a higher or lower percentage of papers considered
reproducible. Including other variations on the word irrigated agriculture might have
yielded other results.
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We specifically focused our analysis on the reviewed literature, as this is often where the
standard is established. From an external perspective, it might appear that if papers of high-
ranking journals do not report on certain elements, others may feel less inclined to do so.
However, this practice does not necessarily guarantee the reproducibility and transparency

required for robust research.

While we considered all reporting steps equally in our analysis, it is essential to recognise
that not all steps have an equal impact on the extent of irrigated agriculture depicted in
the maps. The training data, for instance, has a more substantial influence on the results
than the algorithm used (Maxwell et al., 2018). Consequently, our developed framework is
not designed to rank and directly compare studies against each other based on a numerical
score. For instance, a study scoring 7 out of 8 is not necessarily deemed more reliable than a

study scoring 2 out of 8.

Instead, the framework’s primary purpose is to highlight the extent of reporting on each step.
A study scoring 7 out of 8 indicates that it can be better interpreted within its specific settings
than a study scoring 2 out of 8. This way, the framework allows for a qualitative assessment of
the reporting comprehensiveness. It provides valuable context for understanding the results

within each study’s unique context.

While we have addressed all the primary classification and presentation steps with our eight-
step framework, this may not be an exhaustive list. Specific steps contain sub-steps that
could rightfully be considered individual main steps. For instance, Training and validation

data could benefit from further expansion, particularly regarding the three steps mentioned.

As more authors adopt and report on all the steps using this framework or a similar one,
the importance of specific steps may increase, while others may become less relevant.
Consequently, the framework is subject to evolution and refinement over time, with the
possibility of adding or removing steps based on the collective understanding and experience
of researchers. Continuous improvement and adaptation of such frameworks are vital
to ensure the comprehensive assessment of classification and presentation procedures in

research.

As there is no fixed structure in reporting, it is often difficult to find the elements in the texts
for a conclusive answer in the framework. Consequently, we could answer the questions by
interpreting ambiguous formulations — for example, map temporality. An option to mitigate

this would have been to interview the authors of the 25 articles on their choices.

53



Chapter 2 - Towards transparent reporting

7.  Conclusion

Producing quality land use maps using remote sensing requires careful, accurate, and
transparent choices. We define eight classification steps that need careful reporting,
including sampling design, setsof classes, field data collection, predictor variables, algorithm,
accuracy, map seasonality, and code and data sharing. Reviewing 25 articles, we found that
none sufficiently documented all classification steps. The limited number of papers we found
during the literature search indicates that mapping smallholder irrigation is an emerging
field of study, making the recommendations in this study even more important. Although
the reasons for not reporting are unknown, the lack of explicitly made choices hampers a
proper evaluation of irrigated agriculture’s extent, particularly smallholder irrigation. There
are numerous ways in which the classification choices can influence the accuracy of irrigated
area mapping. Making choices explicit in the classification process will allow others to
use relevant parts for their own study and assess the likelihood that the extent of irrigated
agriculture is reasonable, over-estimated or under-estimated. Because maps are always
social constructs and subjective abstractions of reality, being transparent about a study’s
implicit and explicit choices, reasoning, and interpretations is good practice.

Furthermore, making the elements used in the classification process public and accessible
is crucial. It enables remote sensing scientists to assess the dependability of new methods
and modelling techniques by providing essential information (Morales-Barquero et al. 2019).
All authors working on remote sensing-derived maps go through the first seven steps of
the developed framework, whether consciously or not. However, it is apparent that steps
remain undocumented, at least in the final publication. A full explanation for this behaviour
will require further study involving survey techniques and interviews with remote sensing

scientists.

Creating the framework is just the initial step; its effectiveness relies on diverse actors
adopting it in various ways. Drawing inspiration from other scientific fields, like hydrology
(Stagge et al., 2019), authors can utilise the framework as a self-assessment checklist,
ensuring the inclusion of data, models, and code in their work before submitting it for
publication. As echoed by other scholars (Castilla, 2016; Morales-Barquero et al., 2019), if
journals impose requirements for reporting on all elements, it is likely to drive a positive
change in behaviour. This, in turn, can influence practitioners who do not actively publish, as
they will reference articles that adhere to complete reporting and follow the same structured
approach.

Moreover, journals, funders, and institutions can employ the framework to assess the

presence of data, models, and code in new submissions, offering feedback to authors and
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making it a prerequisite for submission. To encourage compliance, journals may consider
introducing special recognition or awards for papers that exemplify best practices in
documenting irrigation maps. Journals already encourage authors to publish data, code and
other additional information in the annexes. Such an approach would motivate authors and
research teams to adopt these practices as it enhances their reputation and increases the

visibility of their work.

The extensive documentation of all classification steps in irrigation maps carries several
positive implications for irrigation policy and practice. Carefully made maps may help
inform governments of areas with and without agricultural activity, allowing them to
support farmers who need it and minimise wasted effort on areas where farmers are not
actively practising irrigation. At the same time, it avoids allocating presumably ‘empty’ areas

to other uses despite smallholders being active there.

Sharing extensively documented irrigation mapping methodologies promotes the adoption
of best practices across different regions or countries. Policymakers and practitioners can
learn from successful experiences and avoid repeating mistakes made in other contexts. This
approach advances irrigation practices worldwide by fostering collaboration and knowledge

exchange.
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Chapter 3

Mapping irrigated agriculture in
fragmented landscapes of sub-
Saharan Africa: an examination of
algorithm and composite length
effectiveness

This chapter is published as:
Weitkamp, T., Veldwisch, G. J., Karimi, P., & de Fraiture, C. (2023).

Mapping irrigated agriculture in fragmented landscapes of sub-Saharan Africa: An

examination of algorithm and composite length effectiveness.

International Journal of Applied Earth Observation and Geoinformation, 122, 103418. https://
doi.org/10.1016/j.jag.2023.103418



Chapter 3 - Algorithm and composite length effectiveness

1.  Abstract

Accurately identifying irrigated areas is crucial for sustainable development, food
security, and effective land and water resource management. However, incomplete or
outdated national estimates of irrigated areas underestimate the extent of it, particularly
among smallholders. This study aimed to address this issue by investigating the impact
of different algorithms and composite lengths on predicting irrigated agriculture in four
study areas in Mozambique. The study found that the choice of algorithm and composite
length notably impacted the accuracy of identifying irrigation. Shorter composite lengths,
such as 2-monthly or 3-monthly composites, were more effective in identifying irrigation
in fragmented and dynamic landscapes, while longer composite lengths were better suited
to stable classes and homogeneous landscapes. Artificial neural networks, support vector
machines, and random forests were all effective algorithms for classifying irrigation.
However, the study emphasised the importance of considering hotspots and agreement maps
when identifying irrigation. Agreement maps combine the classification results of multiple
models, providing better insights into the core areas of irrigated agriculture and allowing
for a better understanding of irrigation dynamics and policy decision-making, particularly
among smallholder systems. This research provides valuable insights for those working on
remote sensing-based irrigation mapping and monitoring in sub-Saharan Africa, focusing
on identifying smallholder irrigation with greater certainty.
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2. Introduction

Obtaining accurate information about irrigation is vital for making informed decisions about
land and water resource management for food security and sustainable development (Bofana
et al., 2020; Wellington & Renzullo, 2021). Unfortunately, national estimates of irrigated
areas are often based on limited on-ground surveys or low-resolution remote sensing data
for large-scale applications (Wellington & Renzullo, 2021). The available information is often
outdated or incomplete (Beekman et al., 2014b; Espey, 2019; Venot et al., 2021). Furthermore,
limited budgets prevent officials from conducting regular in-person agriculture monitoring

(Ajaz et al., 2019; de Bont et al., 2019; C. Ramezan et al., 2019).

African smallholder agriculture is a complex system that often takes place on small, irregular-
shaped fields with in-class variance such as inter- and mix-cropping systems and variability
in the timing of agronomic activities such as planting, harvesting and irrigation (Bégué et
al., 2018;Izzi et al., 2021; Veldwisch et al., 2019). It is often found in mosaic landscapes where
agriculture and natural vegetation alternate over short distances, resulting in frequent
changes in land cover/use over short distances.

Distinguishing irrigated from rainfed agriculture or natural vegetation can be challenging,
particularly in areas where soil moisture does not quickly deplete, such as near streams or in

wetlands, which may have similar soil moisture patterns as irrigated croplands.

Despite the challenges of accurate mapping, quantifying and monitoring irrigation
practices, remote sensing (RS) imagery has become popular for land use classification.
Evaluating how different machine learning algorithms perform in classifications is one of
the most studied aspects of land use classifications (Marin Del Valle & Jiang, 2022), of which
the random forest (RF), support vector machine (SVM), artificial neural networks (ANN) and
k-nearest neighbours (k-NN) are among the most mature and widely used (Maxwell et al.,
2018; Sheykhmousa et al., 2020; Thanh Noi & Kappas, 2017). RF is popular for its ease of use
and high accuracy (Belgiu & Drigut, 2016), while SVM is often chosen due to its ability to
perform well with few training samples (Mountrakis et al., 2011). ANN is frequently used
when detecting trends or patterns is difficult, and with the increase in computation power,
it is being utilised more frequently (Abdolrasol et al., 2021). The k-NN classifier, although
simple, has been found to compete with more complex classifiers in terms of performance
(Abu Alfeilat et al., 2019). However, few studies compare two or more algorithms in the field

of (smallholder) irrigation mapping.

Simple methods to use satellite data for classification are through single images or

composites (Gella et al., 2021). Composites are widely used to generate cloud-free spatially
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consistent images from satellite time series, and can be created based on summary measures
extracted from the time series (Khatami et al., 2020), such as mean, minimum, or maximum
pixel values. Vegetation phenology can be characterised by creating shorter composites
such as monthly or seasonal composites (Bey et al., 2020b; Khatami et al., 2020; Kumar
et al., 2022). However, using them could reduce the classification accuracies because they
contain less information than, for example, time series data (Marin Del Valle & Jiang, 2022),
although contrasting findings suggest that the opposite effect is also possible (Hasenbein et
al., 2022). Alternatively, the temporal variation can be captured by calculating the geometric
median, which preserves high-dimensional relationships between spectral bands, and three
median absolute deviation statistics of temporal variation (Roberts et al., 2017, 2018). These
composites and statistics have successfully been used in classifying irrigated croplands in

Zimbabwe (Wellington & Renzullo, 2021) and seem promising for our study.

Enough studies have already investigated the effect of different machine learning algorithms
or composites in land use classification. Bey et al. (2020) found high accuracy using the
median composite with RF for mapping smallholder croplands in Mozambique, Abubakar et
al. (2020) achieved high accuracy in mapping maise fields in Nigeria with RF and SVM but
used single images instead of composites. Furthermore, Bofana et al. (2020) compared four
algorithms using combined seasonal input data but did not explore other composite lengths.
However, to our knowledge, no study exists in which different algorithms and composite
lengths are compared over the same study area. This study examines how different algorithms
and composite lengths affect the accuracy of predicting irrigated agriculture in Mozambique.
The research evaluates four classifiers (RF, SVM, ANN, and k-NN) and four composite lengths
(12-monthly, 6-monthly, 3-monthly, and 2-monthly) and introduces “agreement maps” to
show core areas of irrigated agriculture surrounded by an uncertainty zone. These maps can
combine the strengths of multiple models and reduce the possibility of false positives. This

unique method focuses on specific class distribution and classification certainty.

3. Materials and methods

We analyse the impact of different algorithms and composite lengths on the accuracy of
irrigated agriculture in two stages (Figure 1). Firstly, we test four algorithms and select the one
with the highest accuracy. Secondly, we test this algorithm with different composite lengths,
limiting each phase to one study area per province. We present maps of classifications and
measures of accuracy for each combination of algorithm, composite length, and study area.
A new method for consolidating the results by identifying hotspots is introduced. Table 1
summarises the different classifications, with each combination of algorithm and composite

referred to as a distinct model (16 models in total).
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Table 1 Overview of the different models/classifications.

Algorithm Composite  Study areas
Phase1 RF 2X6 Catandica & Xai-Xai
SVM 2X6 Catandica & Xai-Xai
k-NN 2X6 Catandica & Xai-Xai
ANN 2X6 Catandica & Xai-Xai
Phase 2 RF 1X12 Manica & Chokwe
RF 2X6 Manica & Chokwe
RF 4X3 Manica & Chokwe
RF 6X2 Manica & Chokwe
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Figure 1 Flow chart illustrating the two phases and methods used per phase.
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3.1. Studyarea

This study was conducted in four areas in Mozambique: Chokwe and Xai-Xai in Gaza
province and Manica and Catandica in Manica province (Figure 2). These areas were chosen
for their diverse agroecological characteristics and the presence of irrigated agriculture,
including small-scale and large-scale systems. The case studies covered approximately 40x40

km in size.

Mozambique's rainy season occurs from November to April, with peak rainfall between
December and February (Figure 3). Chokwe receives 650 mm/year (Kajisa & Payongayong,
2011), Xai-Xai receives 950 mm/year (Brandt et al., 2009), and both Manica and Catandica
receive 1100 mm/year (Gumbo et al., 2021; Weemstra et al., 2014). Irrigation occurs during

the dry season, with two cycles occurring roughly from April to July and August to November.

In Manica province, the landscape is mountainous, with small streams serving as irrigation
sources. Farmers redirect the water into earthen canals called “furrows” and use sprinkler
irrigation, small pumps, and bucket irrigation. These systems are smaller than those in Gaza
province and vary based on water availability. Horticultural crops are irrigated during the

dry season, while maise is grown during the rainy season.

In Manica province, the landscape is mountainous, with small streams serving as irrigation
sources. Farmers redirect the water into earthen canals called “furrows” and use sprinkler
irrigation, small pumps, and bucket irrigation. These systems are smaller than those in Gaza
province and vary based on water availability. Horticultural crops are irrigated during the

dry season, while maise is grown during the rainy season.

In Gaza province, there are both large- and small-scale irrigation systems along the banks
of the Limpopo River. Flooding is a common practice, and pumps are used to access higher
areas. Near Xai-Xali, there are irrigated areas with shallow groundwater tables that require
drainage after the rainy season. Horticulture and maise are common crops in the irrigation

season, while rice and maise dominate the rainy season.
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Figure 2 The four study areas in Mozambique, from top to bottom: Catandica, Manica (Manica province),

Chokwe, and Xai-Xai (Gaza province). See Annex 2 for detailed classifications per study area.
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Figure 3 Mean monthly precipitation (1991-2020) per province. Irrigation occurs during the dry season,
with a first cycle roughly from April to July and a second from roughly August to November
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3.2. Sampling design, labelling protocol, and field data sampling

Field reference data were collected from August to November 2020 using three different
sampling strategies: random clustered, opportunistic, and regular clustered designs. A
random clustered sampling design was initially used to minimise travel time, but resulted
in overlapping polygons and limited samples of irrigated agriculture. An opportunistic
sampling design was used to gather more irrigated agriculture samples specifically, while
a regular clustered design was used to prevent overlap and ensure sufficient polygon size
for Sentinel pixels. The collected data was cleaned and analysed, resulting in 823 unevenly
distributed polygons among different classes and areas. Hard-to-reach areas were mapped
manually. Table 2 describes the classes following the ESA WorldCover definition (Zanaga et
al., 2022), while Table 3 provides the number of polygons and total hectares per class and
area. The classes cropland, grassland, shrubland, and tree cover were labeled in the field
using Open Data Kit (ODK) Collect, a smartphone application that allows rapid and scalable
field data collection (ODK collect, 2022).

The cropland classes (irrigated and rainfed) were distinguished by the period In which crops
were actively grown, specifically during the rainy season (water is primarily supplied through
rainfall) or the dry season (water is actively managed on the fields, either by applying or by
draining water).

Table 2 Class descriptions

Cropland irrigated Croplands under management mainly during the dry season. Any active
form of water management is considered, from drainage to application

through buckets.

Cropland rainfed Croplands under management mainly during the wet season

Tree cover Natural vegetation comprises mainly trees and dense undergrowth.

Shrubland Natural vegetation comprising of mainly low shrubs, grasses, and some
scattered trees.

Grassland Natural vegetation of primarily grass.

Wetland Natural vegetation that is submerged part of the year (mainly during the
rainy season and first part of the dry season).

Water Water bodies and rivers.

Built-up area Man-made surfaces and built-up areas, including bare areas such as sand
(no vegetation).
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Table 3 Polygon distribution and size (hectares) per area and class of the collected field data.

Catandica Manica Xai-Xai Chokwe
#polygons hectares # polygons hectares # polygons hectares # polygons hectares
Cropland 45 16,4 58 10,2 157 38,3 68 166
irrigated
Cropland 34 10,9 32 7 19 5,8 48 40,4
rainfed
Tree cover 9 148 19 104 9 37,2 15 12,5
Shrubland 25 89,5 20 11,3 28 26 104 187
Grassland o o o o) 52 111 o o
Wetland o o o o 6 27 12 144
Water o] o 9 113 9 42,6 5 17,2
Built-up 10 3,4 10 5,6 10 18,1 10 11,5
area
Total 123 268,2 148 251,1 290 306 262 578,6

3.3. Inputvariables: Data collection and preprocessing — Digital Earth Africa

Satellite data for the four areas were collected within the Digital Earth Africa (DEA) ‘sandbox’,
which provides access to Open Data Cube products in a Jupyter Notebook environment'.
Sentinel-1 and 2 geomedian products (a robust high-dimensional statistic like the normal
median that maintains relationships between spectral bands, DEA, 2021; Roberts et al., 2018)
were generated at 10-meter resolution for four different composite lengths (one 12-monthly,
two 6- monthly, four 3-monthly, and six 2-monthly), covering October 2019 — September
2020, corresponding to the hydrological year (wet and dry season). Images with more than
30% cloud cover (Sentinel 2) were filtered out. A 6-month composite means that all acceptable
satellite images are mosaiced into a single geomedian composite, over which specific

statistics and indices are calculated.

From Sentinel-2 we calculated the Normalised Difference Vegetation Index (NDVI), Bare
Soil Index (BSI), and Normalised Difference Water Index (NDWI), using the DEA indices
package for the Sentinel-2 composites (Wellington & Renzullo, 2021), while the Chlorophyll
Index Red-Edge (CIRE) (Gitelson et al., 2005; Segarra et al., 2020) was calculated in R. Three
second-order statistics (Median Absolute Deviations (MADs)) were also calculated, which
are change statistics based on the geomedian: the Euclidean (EMAD, based on Euclidean
distance), Spectral (SMAD, based on cosine distance), and Bray-Curtis (BCMAD, based on
Bray-Curtis dissimilarity) MADs (Roberts et al., 2018). Wellington & Renzullo (2021) used

1 Sandbox link and explanation can be found on https://docs.digitalearthafrica.org/en/latest/

sandbox/index.html
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these change statistics, as well as a few of the indices in their classification of irrigated areas,
with success. We used these indices and statistics to cover the different phases of croplands,
from browning (BSI) to greening (NDVI, CIRE), the NDWI for water detection, while the
MADs are suitable for change detection, particularly for irrigation (Wellington & Renzullo,
2021).

We also used Sentinel-1, specifically the VV and VH bands, and calculated the Radar Vegetation
Index (RVI). These have also been used in recent agriculture mapping studies (Abubakar et
al., 2020; Gella et al., 2021; Venot et al., 2021). The VV polarisation data is sensitive to soil
moisture, whereas the VH polarisation data is more sensitive to volume scattering, which
depends strongly on the geometrical alignment and characteristics of the vegetation.
Therefore, VH data has a limited potential for estimating soil moisture compared to VV data
but higher sensitivity to vegetation (Gao et al., 2018). The RVI can be used to separate soil
from vegetation (Jennewein et al., 2022; Mandal et al., 2020). Additionally, the study area

experiences frequent cloud cover for parts of the year, and the synthetic-aperture radar (SAR)

Table 4 Overview of variables per composite time-length

Group Variable Equation
Sentinel-2  Blue
Green
Red
Near Infrared (NIR)

Red-edge 1 (RE1)
Red-edge 2 (RE2)
Shortwave Infrared 1 (SWIR1)
Shortwave Infrared 2 (SWIR2)
Indices Sz Normalised Difference Vegetation Index (NIR - Red)/(NIR + Red)

(NDVI)
Normalised Difference Water Index (NIR — SWIR1)/(NIR + SWIR1)
(NDWI)
Bare Soil Index (BSI) ((Red + SWIR1) - (NIR + Blue))/((Red +
SWIR1) + (NIR + Blue))
Chlorophyll index (CI) (NIR /Red Edge1) -1
Temporal 3 MADS S2 See Roberts et al. (2018) and Wellington
variation and Renzullo (2021) for more details on
equations
Sentinel-1  VV
VH
Indices S1  RVI xVH /(VV +VH)
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data is less affected by cloud cover. As a result, the SAR composites of the cloudy seasons
contain fewer missing observations and improve classification results, as radiofrequency

radiation from SAR can penetrate through clouds.

All bands and indices were merged into one dataset, forming an 18-variable dataset (Table 4).

This was done per composite length (4 lengths) and per area (4 areas).
3.4. Classification

3.4.1. Conceptual description of the machine-learning algorithms

We used four different algorithms, namely a radial support vector machine (SVM), random
forest (RF), artificial neural networks (ANN), and k-nearest neighbours (k-NN). We used
the caret package (Kuhn, 2008), which uses the free statistical software tool R and allows for
systematically comparing different algorithms and composites in a standardised method.

The scripts can be found on GitHub.

Since our focus is on the application of the algorithms rather than the theoretical aspects of

their design, we provide only a short description of each algorithm.

* Support vector machines (SVMs) split the classes by fitting an optimal separating
hyperplane (OSH) between classes using the training samples within feature
space (i.e., all the pixel band values within the training sample) and to maximise
the margins between OSH and the closest training samples (the support vectors)
(Mountrakis et al., 2011).

* Random forest (RF) is an ensemble learning technique that generates many
random decision trees that are then aggregated to compute a classification (Belgiu
& Dragut, 2016).

* Artificial neural network (ANN) design is based on the biological nervous systems,
which is where their name comes from. An ANN is made up of neurons, which
are organised in layers. The key characteristic of an ANN is that all neurons in
one layer are connected to all neurons in all adjacent layers, and these connections
have weights (Abdolrasol et al., 2021).

* The k-NN classifier is different from the other classifiers. Instead of producing a
model, each unknown sample is directly compared against the original training
data and is assigned to the most common class of the k training samples that are

nearest in the feature space to the unknown sample (Maxwell et al., 2018).
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3.4.2. Spatial folds and parameter settings

The polygon shapefiles and images were read into R, after which all pixel values for all
variables were extracted. After extracting the pixel values, the field data was split into 80%
training and 20% validation data using a fixed seed number (i.e., the same data used in each
model's training and validation), stratified per landcover class. The CreateSpacetimeFolds from
the caret package (Kuhn, 2019) was used to create three spatial folds, meaning all pixels within
a polygon remain together in either the training or testing phase, instead of some pixels
within the same polygon being used for training, and their neighboring pixels being used
for testing. This reduces spatial overfitting, i.e., it avoids over-optimistic models (Meyer et
al., 2018a). Five cross-validation folds were used during the training phase (caret:ffs(). These
scripts can be found on GitHub.

The caret::ffs() function, or forward feature selection, first trains a model with two predictors
using all possible pairs of predictor variables, after which the best initial model is kept.
Iteratively, a new predictor is added to the model, and again the best combination is kept.
This process stops when there is no increase in model performance. This function reduces the
complexity of the model; however, combining all predictors takes time. Doubling the number

of variables results in roughly four times as many sub-models to process.

All hyperparameters were tuned through the tuneLength (in caret:ffs()) option, which
generated five random tuning parameter combinations. Manual hyperparameter setting
was considered but not used. The classification model with the highest overall accuracy was
used to predict the entire extent of each site.

3.5. Accuracy/error assessment

We evaluated the performance of the models using a range of metrics, including overall
map accuracy, user accuracy, and producer accuracy. These metrics were calculated using
the unbiased accuracy assessment method described by Olofsson et al. (2014) and the mapac
package in R (Pflugmacher, 2022).

To assess the models, we used a cross-validation approach, in which the training data
was split into folds, and the model with the highest result was compared to 20% of the
validation data (the same 20% in each run). The results for each model were then reported in
a confusion matrix. It is important to note that the overall accuracy can be biased towards
the most abundant class in the training data. Therefore, it is useful also to consider the user's
and producer's accuracies, which provide more detailed information about the model's

performance for a specific class.
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3.6. Presentation of results

Using multiple models to assess irrigated agriculture is crucial, but defining boundaries
can vary. To address uncertainty, "irrigation hotspots" can be identified as areas where
irrigation is known to exist but cannot be accurately measured. "Agreement maps" combine
model classifications, showing consensus on irrigation locations. A value of 4 out of 4 models
signifies unanimous identification, while 1 out of 4 models means only one identified

irrigation.

4. Results

In the first section, we explore the influence of the different algorithms (using only the 2x6-
month composite). In the second section, we explore the influence of composite length on
the visibility of irrigated agriculture (using only the rf algorithm).

4.1. Comparison: algorithms

We use the 2x6-monthly composites to compare how well irrigated agriculture is classified
using different algorithms for Catandica and Xai-Xai regions. This composite length is used
because of the balance between a low number of parameters (i.e., computation time) and

acceptable accuracies.

4.1.1. Accuracies and classifications for different algorithms

The results in Table 5 show the accuracies of various models that use different algorithms
for classifying irrigated agriculture in two study areas. The knn algorithm had low user
and producer accuracy (7-26%) in both areas but had higher overall accuracy due to its good
performance in identifying tree cover in Catandica and grassland in Xai-Xai. The nnet and
svmRadial algorithms had very high accuracy (95-99%) in Catandica, while the rf algorithm
had reasonable accuracy (80-85%) in both areas, and the symRadial algorithm had reasonable
accuracy (75-85%) in Xai-Xai. The overall accuracies were higher than the class-specific
accuracies, indicating that certain classes, such as dense and shrubland in Catandica and
grassland in Xai-Xai, were more prevalent. The confusion matrices in Annex 1 show that in
Xai-Xai, irrigated agriculture was mainly confused with grassland and shrubland, while in
Catandica, it was mostly confused with both light and tree cover (for the rf classification

only).

Figure 4 demonstrates that while the nnet and svm algorithms have similar levels of accuracy,
they produce different maps of irrigated agriculture. The svm algorithm shows more
irrigation on the western side of the map, while the nnet algorithm shows more clusters

of irrigation following streams. While the rf and nnet algorithms have different levels of
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Table 5 User, producer and overall accuracy for irrigated agriculture for the algorithm models.

Accuracy
Producer's User's Overall
Catandica knn 7.4+0.6 25.8+2.0 61.1+0.5
nnet 99.6+0.3 97.7+0.7 98.4+0.2
rf 80.3+1.7 79.3+1.9 93.7+0.3
svmRadial 93.5+1.1 94.9+1.0 98.1+0.2
Xai-Xai knn 10.6 £ 0.6 18.5+ 1.1 41.9+0.4
nnet 85.8+0.9 91.0+0.8 91.6+0.3
rf 85.9+0.9 86.2+1.0 91.8+0.3
svmRadial 74.3+1.0 84.8+1.0 85.3+0.3

ik F

Figure 4 Extent of irrigated agriculture per algorithm (tlbr: vf, svm, ann, knn) for Catandica.
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accuracy, the maps they produce are similar. The knn algorithm greatly overestimates the
extent of irrigated agriculture, with almost the entire map showing this class except for areas
of tree cover in the bottom left corner. All four algorithms also incorrectly classify trees in
Catandica town (located in the centre of the map, see Annex 2 for more details) and some
rock outcroppings (not present in the training data) as irrigated agriculture.

In Xai-Xai, the rf and nnet algorithms have similar levels of accuracy, and their classified
maps are also similar (Figure 5). However, both of these algorithms, as well as the svm
algorithm, incorrectly classify many individual trees in towns (located in the bottom right

quadrant of the map, see Annex 2 for more details) and groups of trees in predominantly

Figure 5 Extent of irrigated agriculture per algorithm (tlbr: rf; sym, nnet, knn) for Xai-Xai.
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rainfed agriculture areas (on the east and west sides of the map, outside of the Limpopo
river valley) as irrigated areas. The maps produced by these three algorithms show many
areas of irrigated agriculture along the edges of the valley and the river. In contrast, the map
produced by the knn algorithm shows no clear structures that follow the landscape.

4.1.2. Irrigation agreement maps

The knn algorithm tends to overestimate the area of irrigated agriculture, making it
unsuitable to use in agreement maps for visualising hotspots accurately. Consequently, we
will exclude its results and only consider the outcomes from the remaining three algorithms.
By overlaying the estimated maps from these algorithms, which identify the irrigation class,
in an ‘agreement map, we can identify hotspots (Figure 6).

In the top inset map (A), smallholder irrigation is near Catandica’s urban region, correctly
classified asirrigation by all three algorithms. However, the algorithms wrongly classify most
of the urban trees as irrigation, and their boundaries differ slightly, leading to some areas

with uncertainty. We call the pixels where all models agree (3/3 in this case) the core areas,

Figure 6 Map of Catandica showing how many of the models classified a pixel as irrigated agriculture, and
two zoom-ins of a smallholder irrigation scheme (A) and part of the larger tea plantation (B). The values
in the legend show how many models classified a pixel as irrigated agriculture: 3 means agreement in 3

models.

82



and the pixels surrounding these core areas the uncertainty zone. In the bottom inset map (B),
the three algorithms accurately identify most of a tea plantation as irrigated agriculture, but
some minor patches are classified differently by one or two algorithms. The knn algorithm,
notincluded in this figure, classified all the surrounding grasslands as irrigated areas (Figure
4), overestimating the extent and location of irrigated agriculture.

In Xai-Xai (Figure 7), we excluded knn results from the agreement map. In area A (top inset
map), smallholder irrigated fields have clusters of 3 models’, indicating agreement between
the results, but with less certain areas in between. The bottom right part of area A, an urban
area (Xai-Xai), has most of the trees misclassified as irrigated area. Area B (bottom inset
map) shows a large, irrigated rice scheme (Hubei-Gaza Rice project). There is a major cluster
ofirrigated agriculture recognised by all models in the centre of this map, but the remaining

fields are only identified by one or two of the algorithms.

The main overview map also shows that there are a lot of irrigated areas in the northeast

quadrant, which are mostly misclassified pixels (1 model); this area has a higher elevation

Figure 7 Map of Xai-Xai showing how many of the models classified a pixel as irrigated agriculture, and
two zoom-ins of a smallholder irrigation scheme (A), and part of the large rice irrigation scheme (B). The
values in the legend show how many models classified a pixel as irrigated agriculture: 3 means agreement

in 3 models.
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(+20 meters) than most of the irrigated fields (which are in the Limpopo valley), where we

primarily find rainfed agriculture, small patches of tree cover, shrubland, and urban areas.

Table 6 Accuracy of hotspot values and total number of hectares classified.

Training data
Agreement # pixels Total % Total hectares
correctly # pixels correctly
classified classified classified
Catandica  1model 26 242, 1% 23124
2 2 models 189 200 95% 6660
< 3 models 2145 2145 100,0% 1205
§D Xai-Xai 1model 355 2255 16% 20872
= 2. models 839 1315 64% 17744
3 models 4656 4704 99% 26537

Table 6 shows hotspot accuracy and classified hectares for Catandica and Xai-Xai, with
three categories based on the agreement between models: 3 models refers to three models
classifying the same pixel as irrigated agriculture. The table shows that 3 models pixels
are almost 100% correctly classified as irrigated agriculture, indicating high confidence in
the core hotspots. However, there is an uncertainty zone surrounding the core areas. In
Catandica, the 2 models ring is still accurate, while in Xai-Xai, only two-thirds of the pixels
were accurately classified. Pixels identified by only one model are usually incorrect and can

be excluded from final assessments.

4.2. Comparison: composite lengths
Here we present the results of the different composite lengths using the RF. We used this
algorithm because of its high computation speed, ease of use, and widespread use within

the community.

4.2.1. Accuracies and classifications for different algovithms

Table 7 displays the accuracies of various models that used different composite lengths
to classify irrigated agriculture in two study areas. All models had high overall accuracies
(above 95%). A single 12-month composite may not be sufficient to capture the differences
between irrigated agriculture, rainfed agriculture, and shrubland in a complex landscape,
such as the one found in Manica. This composite performs better in the slightly less complex
landscape of Chokwe. Based solely on overall accuracy, Chokwe should be classified using the
2x6-month composites, while Manica should be classified using the 6x2-month composites.
However, doubling the number of variables results in roughly four times as many sub-
models to process, with only a limited increase in accuracy. Additionally, accuracy alone is

insufficient to base conclusions on, as discussed in Section 3.1.
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Confusion of irrigated agriculture in Chokwe was mostly with shrubland in all models

(Annex 1). In Manica, irrigated agriculture was confused with several classes, primarily

rainfed agriculture, followed by shrubland.

Table 7 User, producer, and overall accuracy for irrigated agriculture for the algorithm models.

Accuracy
Producer’s User’s Overall
Chokwe 12m 98.9+0.2 98.0+0.2 96.1+0.2
3m 97.5+0.3 95.7+0.3 94.9+0.2
6m 99.7+0.1 99.3+0.1 98.0+0.1
2m 98.0+0.2 96.2+ 0.3 95.9+0.2
Manica 12m 73.9+2.0 74.8 +2.3 94.5+0.3
3m 92.8+1.3 90.2+1.6 98.2+0.2
6m 90.4+1.5 91.2+1.6 98.3+0.2
2m 94.8+1.2 91.8+1.5 98.8+0.1

Figure 8 shows the extents of irrigated agriculture for the four composites for Manica. At

first glance, the four results seem similar, with irrigated agriculture following the rivers and

slopes of the mountains. However, the urban area of Messica (located at the bottom centre of

the map, see Annex 2 for more details) contains trees that have been misclassified as irrigated

agriculture. Compared to Chokwe, Manica shows more small-scale irrigation spread out

over the landscape.
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Figure 8 Extent of irrigated agriculture per composite length (tlbr: 12, 6, 3 52 month) for Manica.

Figure 9 shows the similarities in the extent of irrigated agriculture in Chokwe and reveals
that most of the fields at the head end of the Chokwe irrigation scheme are classified as
irrigated agriculture and are actively cultivated, while the tail end shows less irrigated
agriculture — this reflects the actual situation well. The 3-month and 2-month composites
follow the same trends but show a smaller overall area of irrigated agriculture. The 6-month
composite stands out from the other three in its lower misclassification of shrubland in the
map’s top right and bottom left parts. The other composites show small clusters of irrigated
agriculture in these areas, which are not present in the 6-month composite. The urban area
of Chokwe (located at the centre of the map, see Annex 2 for more details) hardly shows any

irrigated agriculture, similar to the other three study areas.
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Figure 9 Extent of irrigated agriculture in green per composite length (tlbr: 12, 6, 3, 2 month) for Chokwe.

4.2.2. Irrigation agreement maps

In the main map of Manica (Figure 10), we can see irrigation occurring in riverbeds and near
mountains, with some large clusters of fields as well as many small patches. Area A (top inset
map) shows an area with two known, clearly delineated smallholder irrigation schemes. Some
core areas (4 models) are surrounded by areas that gradually change from 3 models to 1 model
in a short distance, the uncertainty zone. Area B (bottom inset map) focuses on a few centre
pivots (circular shapes). It shows that only parts of these fields are labelled with 4 models — an
agreement by all four models — but as all pixels of the field are irrigated by the centre pivot, we
would expect all pixels of those fields to be labelled irrigation by all four models. If we had used

only one classification, these areas would not have been very recognisable as centre pivots.
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Figure 10 Map of Manica showing how many of the models classified a pixel as irrigated agriculture, and
two zoom-ins of a smallholder irrigation scheme (A), and part of an irrigated estate by means of center
pivots (circular shapes within area B). The values in the legend show how many models classified a pixel as

irrigated agriculture: 4 means agreement in 4 models.

In Chokwe (Figure 11), we see a similar pattern of core area and uncertainty zone. The map
clearly shows the large-scale Chokwe irrigation scheme along the Limpopo River’s south
bank and some smaller schemes on the north bank, such as area A (top inset map). It also
shows that some of the models have identified irrigated agriculture on islands in the river (1
model), which is certainly possible but may be natural vegetation that has been misclassified.
This area also contains clusters of trees in predominantly rainfed areas that have been
misclassified as irrigated agriculture (1 model). Area B (bottom inset map) box highlights
part of the Chokwe irrigation scheme, of which we know only part is still actively used.

Table 8 summarises the accuracy of the classification of irrigated agriculture in Manica and
Chokwe using different composite models. In Manica, the 3and 4 models agreement achieved
100% accuracy, while the 1 model and 2 models (uncertainty zone) had lower accuracy rates of
1.40% and 64.20%, respectively. In Chokwe, the 4 models achieved 100% accuracy, while the 1
model and 2 models had accuracy rates of 1.40% and 84.60%, respectively.
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Figure 11 Map of Chokwe showing how many of the models classified a pixel as irrigated agriculture, and

two zoom-ins of a smallholder irrigation scheme (blue area) and part of the large-scale Chokwe irrigation

scheme (ved area). The values in the legend show how many models classified a pixel as irrigated agriculture:

4 means agreement in 4 models.

Table 8 Accuracy of hotspot values and total number of hectares classified.

Training data
Agreement Irrigated Total pixels  Irrigation Total hectares
between models agriculture classified  correctly
classified
Manica  1model 6 440 1,40% 20444
2 models 61 95 64,20% 9565
] 3 models 396 396 100,00% 5795
"g' 4 models 1259 1259 100,00% 3289
E‘ Chokwe  1model 3 212 1,40% 16866
. 2. models 22, 26 84,60% 8212
3 models 370 370 100,00% 6736
4 models 18199 18199 100,00% 5389
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5. Discussion and recommendations

We examined how different composite lengths and algorithms affect the accuracy of remote
sensing-based models in identifying irrigated agriculture in four distinct study areas.
Our analysis of 16 models revealed that the composite length and algorithm choice can
significantly impact the results. Therefore, it is necessary to integrate the results of various

models to account for model-specific biases. The following sections discuss our key findings.

5.1.  Algorithm

Our study found that the choice of algorithm can greatly impact the accuracy of remote
sensing-based models in identifying irrigated agriculture. Our experiments showed
that ANNs, SVMs, and RFs effectively classified irrigated areas. However, there was no
straightforward “best” algorithm, as all achieved user, producer, and overall accuracies
ranging from 80% to 95%.

Based on the agreements and differences observed between the different algorithm maps,
we recommend using at least three algorithms and focusing on hotspots to consider both
the heterogeneous and homogeneous parts of the landscape in the model. Additional
research could assess the algorithmic sensitivity to the diverse methods employed in farmer-
led irrigation. This could be accomplished by analysing the performance of the models in
scenarios where training data from these farmers are either excluded or included, allowing

for a comparison between the two.

5.2. Composite length

The study found that composite length is crucial in accurately identifying irrigated
agriculture in diverse landscapes. Shorter composites are better for complex landscapes,
while longer composites are sufficient for homogeneous ones. It is important to consider
composite length when creating remote sensing-based models and to focus on hotspots. The
6-month and 3-month composites are promising options due to their lower computation
time and data size. Using agreement maps incorporating multiple composites enhances the

visibility of features like centre pivots.

Further investigation could centre on determining the optimal selection of months to
include or exclude in the composite. In the current research, a 12-month dataset was used,
distributed across various composite lengths. However, it is worth exploring the possibility
of achieving comparable results by solely utilising the dry season months. This approach may

offer the advantage of requiring less data and reducing model complexity.
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5.3. Model agreement method: hotspot maps

Ouranalysisrevealed that combining models with different compositelengths and algorithms
can improve the accuracy of identifying irrigated agriculture. Hotspot maps provide valuable
information for decision-making and prioritising targeted field surveys or management
decisions. For complex landscapes with dynamic and heterogeneous classes, combining
models can provide better insights into the core areas of hotspots. We recommend including

at least three models to improve the accuracy of the core areas.

5.4. Reflection: other aspects that likely influenced our results

Our findings suggest using multiple composite lengths to capture the dynamic nature of
irrigated agriculture. Shorter composites (quarterly or bi-monthly) are necessary to identify
highly dynamic classes like irrigated agriculture accurately, while longer composites (annual
or seasonal) may be more effective for stable classes like tree cover and urban areas. Focusing
on specific periods, such as the end of the rainy season and the start of the dry season, can

also help capture changes in irrigation and vegetation patterns.

We chose variables and composite statistics based on previous studies on mapping irrigated
agriculture (Elwan et al., 2022; Lebourgeois et al., 2017; Wellington & Renzullo, 2021; Xie et
al., 2019). Our aim was not to determine the “best” variables or statistics, as this is context-
dependent. Different combinations of variables were important for different runs, and the
geomad statistic was sufficient to show the influence of composite length and algorithm
choice. Although these methods have the potential to improve accuracies further, our results
were already high, which raises the question of whether more effort should be focused on

field data collection or improving models at optimal performance.

The training data was collected during the dry season, and the labels for rainfed agriculture
were based on leftover maise stalks and shrubland. The training data may have been
imbalanced, with fewer samples for less prevalent classes. The regular clustered sampling
design was used due to the tradeoft between complete random data collection and travel
time. The data collected through abandoned strategies were still used, but the overall size
was small. Some areas, such as bare rocks and sand, were included into the built-up class,
which resulted in inaccurate classification by the algorithms.

The study was conducted over four areas chosen because of their differences in weather,
topography, and agricultural uses. We hoped to capture various irrigation circumstances
but undoubtedly missed some practices. Hence the findings on composite and algorithm
use may be helpful for some areas of Mozambique but less so further away. For example,
Wellington & Renzullo (2021) found that the annual composite was optimal for classifying

irrigated agriculture in Zimbabwe.
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6. Conclusion

We investigated the impact of different composite lengths and algorithms on the accuracy
of remote sensing-based models for identifying irrigated agriculture in four sub-Saharan
African study areas. Our findings showed that the choice of algorithm and composite length
can considerably affect model outcomes. We found that SVMs, RFs, and ANNs were effective
in classifying irrigated areas, while the k-nearest neighbour algorithm was ineffective in this
task. Shorter composite lengths, such as 2-monthly or 3-monthly composites, were more
effective for identifying irrigated agriculture in complex and dynamic landscapes, while

longer composite lengths were more appropriate for stable classes.

Our study also highlighted the importance of considering hotspots and agreement maps
when identifying irrigated agriculture. Combining the outputs of various models into
agreement maps can provide better insights into the core areas and uncertainty zones
of hotspots. These findings can help decision-makers remotely situated to understand

irrigation dynamics better.
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7. Annex
7.1. Annex 1: Confusion matrices
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7.1.2. Xai-Xai
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7.1.3. Chokwe
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7.1.4. Manica
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7.2. Annex 2: Classification maps

7.2.1. Catandica

97



Chapter 3 - Algorithm and composite length effectiveness

7.2.2. Xai-Xai
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7.2.3. Chokwe
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7.2.4. Manica
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Chapter 4 - Evaluating the effect of training data size and composition

1.  Abstract

Mapping smallholder irrigated agriculture in sub-Saharan Africa using remote sensing
techniques is challenging due to its small and scattered areas and heterogenous cropping
practices. A study was conducted to examine the impact of sample size and composition
on the accuracy of classifying irrigated agriculture in Mozambique’s Manica and Gaza
provinces using three algorithms: random forest (RF), support vector machine (SVM), and
artificial neural network (ANN). Four scenarios were considered, and the results showed that
smaller datasets can achieve high and sufficient accuracies, regardless of their composition.
However, the user and producer accuracies of irrigated agriculture do increase when the
algorithms are trained with larger datasets.

The study also found that the composition of the training data is important, with too few or too
many samples of the “irrigated agriculture” class decreasing overall accuracy. The algorithms’
robustness depends on the training data’s composition, with RF and SVM showing less
decrease and spread in accuracies than ANN. The study concludes that the training data size
and composition are more important for classification than the algorithms used. RF and
SVM are more suitable for the task as they are more robust or less sensitive to outliers than
the ANN. Overall, the study provides valuable insights into mapping smallholder irrigated
agriculture in sub-Saharan Africa using remote sensing techniques.
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2. Introduction

The size and composition of training samples are critical factors in remote sensing
classification, as they can significantly impact classification accuracy. While sampling
design is well-documented in the literature ( Foody, 2009; Foody et al., 2006, 2016; Olofsson
etal., 2014; Stehman & Foody, 2019), questions remain about the optimal number of samples
required, their quality, and class imbalance (Collins et al., 2020; Mellor et al., 2015; Millard &
Richardson, 2015). Class imbalance occurs when one or more classes is more abundant in the
dataset than others, and since most machine learning classifiers try to decrease the overall
error, the models are biased towards the majority class, leading to lower performances in
classifying minority classes than majority classes (Ebrahimy et al., 2022). Generally, class
imbalance can be dealt with through i) model-oriented solutions, where misclassifications
are penalised, or where the algorithm focusses on a minority class, or ii) data-oriented
solutions, where classes are balanced by over- or undersampling (Douzas et al., 2019).

Collecting a large number of quality training samples can be challenging due to limited time,
access, or interpretability constraints. Practical issues and budget limitations can affect the
sampling strategy, particularly in areas that are difficult to access, where rare land cover
classes may be under-represented compared to more abundant classes (Mellor et al., 2015;
C. A. Ramezan et al., 2021). Additionally, if data quality is a concern, selecting an algorithm
that is less sensitive to such issues may be necessary. In the above cases it would be valuable
to know how the sample size and composition affect the classification, and if additional
samples are needed for increased accuracies. On the other hand, if a large sample size is

already available, it may influence the choice of classifier.

These questions are even more relevant for mapping the extent monitoring irrigated
agriculture. Especially smallholder irrigated agriculture is often inadequately represented
in datasets and policies aimed at agricultural production and irrigation development,
due to informal growth and lack of government or donor involvement (Beekman et al.,
2014b; Veldwisch et al., 2019b; Venot et al., 2021; Woodhouse et al., 2017b). This results in a
underrepresentation of smallholder irrigation in official statistics, even though smallholders

provide most of the local food.

There are two general reasons for this underrepresentation. The firstis the often a modernistic
view of what constitutes irrigation by officials and data collectors (de Bont et al., 2019), in
other words large scale systems. The second reason is that African smallholder agriculture is
complex, with variability in field shape, cropping systems, and timing of agronomic activities
(Bégué et al., 2018; Izzi et al., 2021; Veldwisch et al., 2019), often in areas that are hard to

reach. Government officials and technicians that do not know about these areas will not visit
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them, fortifying the idea that there is no other irrigation than the large-scale systems (which
are easier to reach and to recognize). Even if they do know about these systems, they might

mislabel the very heterogeneous irrigated fields (i.e. many weeds) as natural vegetation.

To our knowledge, there have not been any studies yet that have investigated the effects of
these biases in the training data set on classification results, and how choices made by the
data collector result in changing accuracies. Choices could include oversampling irrigated
agriculture because that is the class of interest, or being restricted in budget and only
collecting a few samples. Ramezan et al., (2021) investigated the effects of sample size on
different algorithms and we build on their ideas by including possible scenarios of how
biased datasets can lead to misrepresentation.

There is ample literature on best practices regarding sampling strategies, however these are
not always followed. Although training data (TD) is often assumed to be completely accurate,
it almost always contains errors (Stehman & Foody, 2019). These errors can come from
issues with the sample design and the collection process itself and can lead to significant
inaccuracies in maps created using machine learning algorithms, which can negatively
impact their usefulness and interpretation (Elmes et al. 2020). It is very likely that data
collection efforts in sub-Saharan Africa (SSA) are biased towards classes of interest, or heavily
underestimate rare classes. That is why the main objective of this study is to investigate how
different training data sizes and compositions affect the classification results of irrigated

agriculture in SSA, and what the trade-offs are between cost, time, and accuracy.

This research focuses on mapping smallholder irrigation in complex landscapes in two
provinces of Mozambique and explores the effects of different training data sets on the
classified extent of irrigated agriculture in four scenarios: 1) Size (same ratio, smaller
dataset), 2) Balance (equal numbers per class), 3) Imbalance (over and under sampling irrigated
agriculture), and 4) Mislabelling (assigning wrong classlabels). To fully understand the specific
effects of each type of noise source, this study uses three commonly used algorithms (RF,
SVM, and ANN) in cropland mapping. This research aims to inform analysts on the effects of

noise in TD on irrigated agriculture classification results.

3. Method

3.1. General method
The same training data (TD) that was used in Weitkamp et al., (2023) is used in this research,
including the same satellite data; specifically, the 2x6-month composites will be used due

to the acceptable trade-off between computing time and accuracies. Figure 1 shows the
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overview of the method and how the various scenarios (explained in section 2.5) are run

for the three algorithms, random forest (RF), support vector machine (SVM), and artificial
neural network (ANN).
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Figure 1 General overview of the methodology

3.2. Studyarea & RS data

In this study, we compare two provinces, both having two study areas of 40x40 km (Figure

2). The two provinces are different in climate and landscape, allowing for more comparisons

between models. These study areas were chosen as they contain diverse landscapes such as

dense forests, wetlands, grasslands, mountains, and agriculture.
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A catandica A
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Figure 2 The four study areas, from top to bottom: Catandica and Manica in Manica province; Chokwe and

Xai-Xai in Gaza province.

The following land-cover classes were mapped for this analysis (Table 1):

Table 1 Class descriptions

Cropland irrigated ~ Croplands under management mainly during the dry season

Cropland rainfed Croplands under management mainly during the wet season

Dense vegetation Natural vegetation comprising mainly of trees and dense undergrowth.

Light vegetation Natural vegetation comprising of mainly low shrubs, grasses, and some
trees.

Grassland Natural vegetation of primarily grass.

Wetland Natural vegetation that is submerged part of the year (mainly during the
rainy season and first part of the dry season).

Water Water bodies and rivers.

Built-up area

Man-made surfaces and built-up areas, including bare areas such as sand
(no vegetation).

Two types of remotely sensed data were used: optical (Sentinel 2) and SAR (Sentinel 1). Two

composites of six months were made of the region, using Digital Earth Africa geomads

(DEA, 2021) and median deviations (see Roberts, Dunn, and Mueller (2018) and Wellington

and Renzullo (2021) for more information on these concepts). Further information on the

indices can be found in Weitkamp et al., (2023). The specific scripts can be found on GitHub

(https://github.com/TimonWeitkamp/training-data-size-and-composition)
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3.3. Training and validation samples per scenario

Table 2 shows the number of polygons (and hectares) collected per class per study area in
clustered random strategy, supplemented with some additional irrigated pixels (purposively
sampled). During the simulations, we grouped the samples based on their province to

increase the total number of training data per simulation.

Table 2 Polygon distribution and size (hectares) per area and class.

Catandica Manica Xai-Xai Chokwe

# hectares # hectares # hectares # hectares

polygons polygons polygons polygons
Cropland 45 16,4 58 10,2 157 38,3 68 166
irrigated
Cropland 34 10,9 32 7 19 5,8 48 40,4
rainfed
Tree cover 9 148 19 104 9 37,2 15 12,5
Shrubland 25 89,5 20 11,3 28 26 104 187
Grassland o o o o 52 111 o o
Wetland o o o o 6 27 12 144
Water o o 9 113 9 42,6 5 17,2
Built-up 10 3,4 10 5,6 10 18,1 10 11,5
area
Total 123 268,2 148 251,1 290 306 262 578,6

Of this data, the same 20% of the data per class (fixed seed number) was excluded from the
training dataset intended for validation; hence each of the results is compared with the same

validation data.

This paper investigates four aspects of training data (TD) errors resulting from various

sources, focusing on irrigated agriculture. The following scenarios will be explored:

Scenario 1: Size (same ratio, smaller dataset). In this scenario, we investigate the relationship
between the amount of training data (TD) and the model’s accuracy. Specifically, we want
to determine whether adding more TD in the same ratio always leads to better results or if

similar results can be achieved with fewer data.

To do this, we used eight imbalanced data sets, each with a different proportion of the
original training data. The data sets ranged in size from 1% to 100% of the original dataset,
with increments of 1, 5, 10, 20, 40, 60, 80, and 100%. The pixel ratio for set 8 of both provinces
is shown in Table 3.
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Table 3 Number of pixels in set 8 per province (size dataset)

Gaza Manica
Class set 8 (100%) set 8 (100%)
Built-up area 2849 1064
Irrigated agriculture 19 601 3260
Rainfed agriculture 4798 2540
Dense vegetation 6111 22185
Grassland 10157 -
Light vegetation 20386 9782
Water 5504 9720
Wetland 16 582 -

Scenario 2: Balance (equal numbers per class). In this aspect of the study, we will examine
the effect of class balance in the training data on the classification results. Simple random
sampling often results in class imbalance, where rare classes are under-represented in the
training set due to their smaller area. In particular, we will investigate the impact of using

larger, balanced datasets on the classification performance.

We used 7 sets of balanced data to achieve this, where each class has the same number of TD
samples. The first set consists of 50 samples, and the remaining sets will be divided into six
equal steps based on the class with the lowest abundance (i.e., the smallest class determines

the step sizes). The specific sample sizes (in pixels) for each set are shown in Table 4.

Table 4 Number of pixels per set (balanced dataset)

set1l set 2 set3 set 4 sets set 6 set7
Gaza 50 508 966 1424 1882 2340 2798
Manica 50 225 400 575 750 925 1100

Scenario 3: Imbalance (over and under-sampling irrigated agriculture). In this scenario, we aim to
investigate the effect of class imbalance caused by purposive sampling on the classification
performance. Specifically, we will simulate a scenario where the proportion of samples from

the class “irrigated agriculture” is increased at the cost of other classes.

To do this, we created nine sets of data, each with a different proportion of “irrigated
agriculture” samples. The proportions will be 1%, 5%, 10%, 20%, 50%, 80%, 90%, 95%, and 99%.
To ensure that the same total number of training data is used in each set, the number of
samples for the other classes were adjusted accordingly. The remaining training data were
divided equally among the other classes, following the method described in Millard and

Richardson (2015). The number of samples in each class for each set is summarized in Table 5.
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Table 5 Number of pixels per set (imbalanced dataset)

Class set1 set2 set3 set4 sets set6 set7 set8 set9
1%) (5%) (@0%) (20%) (50%) (80%) (90%) (95%) (99%)
Gaza Irrigated 202 1008 2015 4030 10076 161220 18137 19144 19950
agriculture

Restofthe 2850 2735 2591 2303 1439 576 288 144 29
classes (7)

Total 20152 20153 20152 20151 20149 20154 20153 20152 20153
Manica Irrigated 54 268 535 1071 2677 4283 4819 5086 5300

agriculture

Restofthe 1060 1017 964 857 535 214 107 54 11

classes (5)

Total 5354 5353 5355 5356 5352 5353 5354 5356 5355

Scenario 4: Mislabelling (assigning wrong class labels). In this study, we will examine the effect
of mislabelling on the classification accuracy. In smallholder agriculture SSA, class labels
can be misassigned due to the heterogeneous nature of the agriculture and the potential for

errors or intentional mislabelling.

To simulate this scenario, we created five sets of data, each with a different proportion of
mislabelled pixels. The proportions were 1%, 5%, 10%, 20%, and 40%. The focus will be on
mislabelling classes that may be considered “border cases” that are likely to be confused
rather than randomly selected classes, following Foody et al. (2016). These classes are irrigated
agriculture, rainfed agriculture, and light vegetation. The number of misclassified pixels is

shown in Table 6.

Table 6 Total number of pixels mislabelled per set for non-focus classes (irrigated and rainfed agriculture

and light vegetation).

set1(1%) set 2 (5%) set 3 (10%) set 4 (20%) set 5 (40%)
Gaza 860 4299 8599 17198 34396
Manica 486 2428 4855 9710 19420

3.4. Algorithm and cross-validation parameter tuning

We have used three different algorithms, namely radial support vector machines (SVM),
random forests (RF), and artificial neural networks (ANN). For a description of the
algorithms, we refer readers to Abdolrasol et al. (2021); Maxwell et al. (2018); Ramezan et al.
(2021); Thanh Noi and Kappas (2017). We want to illustrate that the algorithms may interpret

the data differently and lead to different classifications with different accuracies.
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Chapter 4 - Evaluating the effect of training data size and composition

We used the caret package (Kuhn 2008), which uses the free statistical software tool R and
allows for systematically comparing different algorithms and composites in a standardized
method. We used rf, symRadial, and nnet algorithms from caret for the random forest, support

vector machine, and artificial neural network, respectively.

Cross-validation is awidely used method for evaluating the performance of machine learning
algorithms and models. In cross-validation, the data is divided into multiple folds or subsets,
typically of equal size. The algorithm is trained on one subset and tested on the other subsets,
so each subset is used for testing exactly once. The algorithm’s performance is then evaluated

based on the average performance across all the folds.

Spatial K-fold cross-validation is a variation of the traditional cross-validation approach that
considers the spatial relationships between the samples in the dataset (Meyer et al., 2018a).
The spatial k-folds method divides the data into k subsets, with each subset consisting of
samples that are spatially close to each other. This is particularly useful in remote sensing,
where the spatial relationships between the samples are important in understanding the
underlying patterns in the data. In this study, we used spatial k-fold cross-validation.

3.5. Classifications and replications

To ensure the accuracy and reliability of our models, we conducted 25 iterations of all steps
for each of the three algorithms using the same seed numbers. By replicating the process, we
could account for the variability in accuracies that may depend on the specific training data
sets used in each run. This allowed us to evaluate the robustness and generalizability of the
models and determine whether they were sensitive to specific training data points and seed

numbers or whether they were more robust and generalizable to the study area.

We created various sample sizes and compositions by using random subsampling from the
complete sample set, with different seed values. To decrease computation time, we used
the caret::train() function and included all variables in the model rather than using forward

feature selection of the variables.

Figure 3 displays the range of model parameter values per scenario, training data set, and province
based on the overall accuracy. The range of values used by the same algorithms across different
seed values and scenarios demonstrates the inherent randomness in the model results, even with
the same training data. Some parameter values, such as the mtry value of 2 for RF and the decay
and size values for ANN, consistently show higher preference across all datasets. However, sigma
from SVM exhibits little overlap between the provinces and scenarios. These findings suggest that
parameter tuning is highly recommended for SVM and ANN while less necessary for rf, as evident

from the lack of clear patterns in the results — similar to what Phalke et al., (2020) also found.
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Figure 3 Parameter values and how often a model uses that value per algorithm, per scenario (dataset).
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Chapter 4 - Evaluating the effect of training data size and composition

3.6. Accuracy assessment
We calculated the overall accuracy and the user’s and producer’s accuracies using the same

validation dataset for each iteration (Table 7).

Table 7 Sample sizes per class used for accuracy assessment.

Gaza Manica

Built-up area 668 252,
Irrigated agriculture 4936 823
Rainfed agriculture 1227 607
Dense vegetation 1496 5577
Grassland 2536 -

Light vegetation 5132 2428
Water 1339 2452,
Wetland 4165 -

4. Results

The four scenarios (Tables 3, 4, 5, and 6) were designed to demonstrate the impact of training
data composition on accuracy, based on possible design and collection errors. Firstly, each
scenario’s mean overall accuracy per dataset is presented, separated by the province to
account for varying climates and agricultural regions. Then, a closer examination of the
classification of irrigated agriculture within each scenario is conducted, using the user and

producer accuracies.

4.1. The overall accuracy of all scenarios

Figure 4 summarizes the mean overall accuracy of the three classification methods, per
scenario and study area. In scenarios 1 (same class ratio, but smaller) and 2 (equal number
of pixels per class), high accuracy plateaus of greater than 90% are achieved within the first
two sets (5% of total and 508/225 pixels per class, respectively), with similar results across
all algorithms. In scenario 3, which involves over and under-sampling of the “irrigated
agriculture” class, the accuracy starts high and peaks at sets 3 and 4. However, depending
on the algorithm used, it decreases to less than 30-60% in Gaza and 40-50% in Manica when
more than three quarters of the dataset contains a single class. Scenario 4, which involves
mislabelling, shows high accuracy with the first sets (1-5% mislabelling), particularly with
the SVM algorithm remaining stable, while the other two algorithms drop by only five
percentage points.
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The overall accuracy is mainly affected by the majority classes and hides considerable
variation of individual runs. Thus, we will also investigate the classification results of the

irrigated agriculture class by using user and producer accuracies.

Mean overall accuracies per data set, per province
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Figure 4 Mean overall accuracies per algorithm, dataset, province, for each scenario.

4.2. Class specific accuracies per scenario

4.2.1. Scenario 1: same ratio, smaller dataset

Figure 5 compares the accuracies of irrigated agriculture between Gaza and Manica using
different algorithms, for scenario 1. Generally, larger datasets (set 8) show higher accuracies
and less variation in values per dataset than smaller datasets, although there are still
differences between the algorithms and study areas.

In Gaza, the more homogeneous study area, the RF algorithm has the lowest accuracy
spread and the highest accuracy values, whereas the SVM and ANN have more spread and
slightly lower accuracies. The three algorithms are quite stable, with set 2 already leading to
comparable results as set 8, which is 10-20 times larger. For each algorithm, the user and
producer accuracies are in the same range, indicating that “irrigated agriculture” (user), as
well as other classes (producer), are accurately classified. The accuracies are also similar to

the mean overall accuracies.
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1. Size - Same ratio but smaller dataset
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Figure 5 Distribution of user and producer accuracy irrigated agriculture for each algorithm and dataset,
per province, for scenario 1: size.

In Manica, which is more heterogeneous, the user and producer accuracies start low and
increase until a plateau of ~95% is reached after the fifth set with all algorithms. The most
extensive spread in values can be found with ANN in all sets and both accuracies, followed
by SVM in the user accuracy, whereas RF shows the least spread in values. Set 1 (the smallest
dataset) has the lowest accuracies with the largest spread with all algorithms. However, ANN
still has high accuracies (around 80%). It also reaches the plateau the fastest, suggesting that
ANN performs well on smaller datasets, albeit with a larger spread, indicating sensitivity to
the specific dataset used. The user accuracy is generally lower than the producer accuracy
for RF and SVM, at least in the first few sets, indicating that these models were less able to
identify “irrigated agriculture” (user), but better at identifying other classes (producer). This
could be due to the models not being exposed to enough “irrigated agriculture” samples in
the training phase or the models overfitting other classes, meaning they can classify those
classes well but not the “irrigated agriculture” class. The producer’s accuracy is in line with

the mean overall accuracy, whereas the user’s is less so.
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4.2.2. Scenario 2: equal numbers per class

2. Balance - Equal numbers per class
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Figure 6 Distribution of user and producer accuracy irrigated agriculture for each algorithm and dataset,
per province, for scenario 2: equal numbers per class.

Where the producer accuracy is higher than the user accuracy in Gaza, it is the other way
around in Manica (Figure 6). In Gaza, this indicates that the models are not very good at
identifying the class of interest (irrigated agriculture) to the user, but they are very good
at identifying other classes. In Manica, the models are very good at identifying the class of

interest (irrigated agriculture) to the user but not as good at identifying other classes.

In Gaza, most of the producer accuracy values are well above 95%, indicating that almost
all the training data samples have been correctly classified. The user accuracies, although
high, show more spread in values and remain lower (only the last sets reach 95%), indicating
that there is a slight overestimation of irrigated agriculture, especially when the training
data contains fewer irrigated agriculture pixels (first few sets). Excluding set 1, RF has the
least spread in values, followed by SVM. ANN seems to have the most difficulty in consistent
classifications, even as the total number of pixels increases.

In Manica, there is an overall increase in class-specific accuracies with an increasing sample
size of irrigated agriculture with all three algorithms (Figure 5). The spread in accuracies
in the models with the most irrigated agriculture pixels (set 7) is less than those with fewer

samples (set 1), suggesting more robust classifications. However, there is not much difference
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Chapter 4 - Evaluating the effect of training data size and composition

between the last four sets. ANN shows the largest spread in producer accuracies between
the algorithms and starts with the lowest accuracies, while RF and SVM show less spread.
Although ANN showed the largest spread, it also achieved the highest accuracies (between
90-95%), followed by RF and SVM with slightly lower accuracies (85-95%). The user accuracies
of the three algorithms are more similar and mostly above 90% accuracy, with ANN having
the smallest (set 7) and largest (set 1) spread and the highest accuracies, followed by RF and
SVM with slightly lower accuracies and larger spreads.

4.2.3. Scenario 3: over and under sampling

3. Imbalance - Over and under sampling
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Figure 7 Distribution of user and producer accuracy irrigated agriculture for each algorithm and dataset, per
province, for scenario 3: over and under sampling.

Scenario 3, as shown in Figure 7, reveals that the user and producer accuracies are similar
around sets 3 and 4, which contain between 10-20% of the “irrigated agriculture” class. This
composition is similar to that of the training dataset in Gaza and Manica, which is 22% and
6%, respectively. The producer accuracy remains high until set 4, after which it drops rapidly
as the proportion of “irrigated agriculture” increases. The user accuracy is the opposite and
increases until set 4, after which it reaches 100% accuracy. This is not surprising, as most
of the map will be classified as “irrigated agriculture,” meaning the validation data will be

correct for that class. The other classes will be less present in the later sets, resulting in a low
producer accuracy.
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The RF algorithm shows the least spread in both user and producer accuracy. ANN and SVM
have larger spread in producer than user accuracy, and user accuracy spread is small after

sets 2/3. Producer accuracy spread starts small but increases with each set for these two
algorithms.

4.2.4. Scenario 4: mislabelling irrigated, rainfed, and light vegetation

4. Mislabeling - assigning wrong class labels
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Figure 8 Distribution of user and producer accuracy of irrigated agriculture for each algorithm and dataset,
per province, for scenario 4: mislabelling.

Scenario 4 (Figure 8) reveals that in Gaza, the SVM algorithm’s accuracies remain high in all
five sets (over 95%), with only a slight decrease in accuracy and minimal spread in values.
The RF algorithm follows this trend but dips slightly lower in set 5. ANN has the largest
downward trend and the most spread in accuracy values.

In Manica, as seen in Gaza, the SVM algorithm performs best with stable and high (over

95%) accuracies. The RF algorithm starts high but drops to 75-85% accuracy in the last set,

with slightly more spread in values. The ANN algorithm has the largest spread and a larger
downward trend.
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4.3. Visual inspection

In this section, we present a visualization of the level of agreement among models for
classifying irrigated agriculture in the Chokwe area. The images depict areas with varying
degrees of green and red, with darker shades indicating higher agreement or disagreement
among models (referred to as agreement maps), respectively. Specifically, the darkest green
shade corresponds to areas where 25 models agreed on the classification of the pixel as
irrigated agriculture, while the dark red shade indicates a classification by only one model.
In cases where no red or green shades are present, it means that the pixel was classified as a
different class other than irrigated agriculture. We have chosen to display only the first and

last sets per scenario to illustrate the extremes.

4.3.1. Scenario 1: same ratio, smaller dataset

Figure 9 presents a comparison between the results of set 1 (1% of the data) and set 8 (100%
of the data) for scenario 1. Our analysis reveals that set 8 identifies a substantially higher
amount of irrigated agriculture compared to set 1, particularly in the southern region of
the Limpopo River, which encompasses the Chokwe Irrigation Scheme (CIS). In contrast,
the northern bank consists of rainfed agriculture and farmer-led irrigation. Set 1 performs
poorly in identifying irrigated agriculture in this region, except for areas near wetlands and

a few clusters.

Furthermore, we observed differences in the performance of the algorithms. The artificial
neural network (ANN) algorithm identified considerably less irrigated agriculture than the
random forest (RF) and support vector machine (SVM) algorithms, which demonstrated
similar performances. In particular, ANN severely underestimated the amount of irrigated

agriculture in the northern bank, as well as within the CIS.
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Figure 9 Scenario 1 agreement maps
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4.3.2. Scenario 2: equal numbers per class

Figure 10 Scenario 2 agreement maps
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Scenario2, where each class has the same number of pixels, shows more significant differences
between the smallest and largest datasets than scenario 1 (Figure 10). Set 1 underclassifies the
CIS and shows limited irrigation agriculture on the northern bank. The red pixels, where
only a few models classify irrigated agriculture, mostly correspond to individual trees or
small groups of trees. In contrast, set 7 presents a more balanced map with fewer red areas

and larger clusters of irrigated agriculture.
The RF and SVM maps are similar in both sets, while ANN shows fewer areas classified as

irrigated agriculture, similar to scenario 1. Additionally, ANN misclassifies the natural

vegetation on the Limpopo banks as irrigated agriculture in both sets.
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4.3.3. Scenario 3: over and under sampling

Figure 11 Scenario 3 agreement maps
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Scenario3 highlights theimpact of over and under sampling of irrigated agriculture, where set
1hasonly 1% of the pixels as irrigated agriculture, while set 9 has 99% (Figure 11). As expected,
having very few training data for irrigated agriculture results in limited classification of that
class, while having almost only class-specific training data leads to cleaner maps with fewer
red areas on the north bank (at least for RF and SVM).

Comparing the algorithms, we observe that ANN classifies more irrigated agriculture in set
1 than the other two algorithms, but there is minimal agreement among the 25 models (no
green areas present in set 1). Set 3 using ANN shows more irrigated agriculture, but still less
than the other two algorithms. With fewer data (set 1), RF and SVM are less similar, but in set

9, they become more similar again.
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4.3.4. Scenario 4: mislabelling irrigated, rainfed, and light vegetation

Figure 12 Scenario 4 agreement maps
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In Figure 12, we compare Scenario 4 set 4 (with 40% misclassification) with scenario 1 set
8 (with 0% misclassification) for reference. Scenario 4 set 4 shows that more irrigated
agriculture is classified on the north bank than the south bank, with all three algorithms,
compared to the other scenarios. At the same time, there is less irrigated agriculture in the

CIS, with more emphasis on heterogeneous areas for classifying irrigated agriculture.

As in all previous scenarios, the algorithm ANN classifies the least area as irrigated
agriculture, followed by RF. The SVM algorithm classifies the most irrigated agriculture.

5. Discussion

The results of this study align with previous research by Ramezan et al., (2021), which found
that larger sample sizes lead to improved classifier performance and that increasing the
sample set size after a certain point did not substantially improve the classification accuracy.
Scenarios 1 and 2 in this research show that larger datasets improve overall classification
results, but not by much. This plateauing of overall accuracy is not unexpected, as when
classifications reach very high overall accuracy, there is little potential for further increases.
Our study is also in line with what Ramezan et al., (2021) found, in that user and producer
accuracies continued to increase with larger sample sizes, indicating that larger sample sizes

are still preferable to smaller sizes, even with similar overall accuracy results.

A large spread in accuracy means that the specific results depend more on the dataset
that is used for that classification than other factors. For example, the SVM algorithm in
Manica in Scenario 1 resulted in a user accuracy of just above 40%, but also 85%. By chance,
any of the two could have become the final classification; if it was the 85% classification, one
would think enough data is collected for the study, whereas the other sets show that higher
accuracies are possible, with less spread in values. The lower spread in values also indicates
a more stable model which can generalize more. It also means that the specific dataset used
for the classification is less important, as similar results can be expected from any random

subset, also seen in Section 3.3.

Scenario 1, where eight datasets ranged in size from 1% to 100% of the original dataset were
used, shows that larger training datasets lead to the higher user and producer accuracy with
less spread in values (Figure 5). The size of set 5 in Manica falls between sets 3 and 4 of Gaza
(40% vs. 10-20%, respectively), which are also the sets after which the accuracies plateau in
Gaza. This corresponds to ~1300 pixels of irrigated agriculture for Manica and ~1900-3900
for Gaza. This reinforces the statement that larger training data sets are preferable over

smaller sets but that there is an optimum after which accuracies only marginally increase
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at the cost of more computing time and, effectively, more resources lost’ collecting that data
in the first place. To find out if enough data is collected for a classification of irrigated area,
researchers and practitioners can use this subsetting method to evaluate if different iterations
yield the same, stable results, or if additional resources should be put towards more field data

collection.

Scenario 2 also examines the impact of data size on classification performance, but with equal
numbers of samples per class, spread over seven sets. Similar to scenario 1, larger datasets
generally result in higher user and producer accuracies (Figure 6). However, this scenario
highlights differences in the performance of the classifiers in the two study areas. In scenario
1, the results of both study areas followed similar patterns but with different accuracy values.
In this scenario, however, the user and producer accuracy trends are reversed, depending on
the study area. In Gaza, the user’s accuracy is consistently lower than the producer’s, whereas
in Manica, the user’s accuracy is consistently higher than the producer’s. Manica also shows a

larger spread in values for both user and producer accuracy.

Thistrend reversal suggests thatthe modelsin Gazaare better able to classify the non-irrigated
agriculture classes than the irrigated agriculture class, indicating a more generalized model.
Conversely, the Manica models can better classify the irrigated agriculture class than the non-
irrigated agriculture classes, indicating a less generalized model. As all classes have the same
number of pixels per dataset within the same study area, the complexity of the landscape
likely plays a role in this difference. The two provinces generally have different landscapes
(flat vs mountain), climate (little vs lot rainfall) and consequently, different agricultural
practices, with different field sizes (larger vs small) and shapes (regular vs irregular). It is
worth noting that, even though Gaza has twice the number of pixels as Manica, sets 1 are the
same size in both cases, and 3 of Gaza and 7 of Manica are similar in size. However, even for
these sets with similar sizes, Gaza has higher producer accuracies, and Manica has higher

user accuracies.

Scenario 3, where irrigated agriculture is vastly over and under-sampled in nine sets ranging
from 1% to 99%, shows a peak in overall accuracy around sets 3 and 4 (Figure 7, 10% and
20% irrigated agriculture in the dataset). These two sets reflect the ‘true’ composition of
the dataset, which was found in the field. When irrigated agriculture is underrepresented
(sets 1 and 2, 1% and 5%), the overall accuracy is not much lower. This is because the other
majority classes have a greater impact on the overall accuracy. As more irrigated agriculture
is present in the training datasets (sets 5 to 9, 50-99%), the other classes decrease in size, and
irrigated agriculture becomes the majority class. The high user accuracy indicates that any
irrigated agriculture in the validation set is correctly classified (not surprising as all pixels
are classified as such). However, the reverse is that the producer accuracy is extremely low
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(many of the pixels are wrongly classified as irrigated agriculture instead of a different class).

Scenario 4, where similar classes are mislabelled on purpose in 5 sets from 1% to 40%
mislabelling, shows a decrease in overall accuracy (Figure 4) for ANN and only a minor
decrease in the last set for RF. SVM does not seem to be affected, possibly because the support
vectors used for distinguishing the different classes do not change much between the sets,

indicating that SVM is less sensitive to data set compositions.

The user and producer accuracies (Figure 8) also show that SVM can handle this imbalance,
perhaps because it uses the same support vectors to distinguish the different classes in all
the sets. Adding more data will not help the algorithm, as that data is not near the separation
planes between classes. RF is similarly stable, except for the last set, which also shows a larger
spread in accuracy values. The user accuracy is also higher than the producer’s, which comes
from slowly oversampling irrigated agriculture (among other classes). The ANN has many
difficulties with the changing compositions, as seen from the large spread in values and

decreased accuracies. Overall, RF and SVM seem to handle this mislabelled data well.

The results of the study demonstrate the importance of the dataset and algorithm selection
in accurately classifying irrigated agriculture in remote sensing data. Visual inspection
reveals that different areas are classified as irrigated agriculture depending on the dataset
and algorithm used. In some cases, the models prioritize farmer-led irrigated areas over
more conventional large-scale irrigated areas, but the latter is generally classified more
accurately. The amount of data used and the balance between classes also have a significant
impact on the accuracy of classification, with too few data or imbalanced data resulting
in underestimation of the extent of farmer-led irrigation, and too much noise resulting
in overestimation. The RF and SVM algorithms are found to be more robust with noisy
data than the ANN algorithm. Although the maps do not distinguish between farmer-led
irrigation and large-scale irrigation, our knowledge of the area enables us to interpret the

maps in terms of these different types of irrigation.

Generally, there are many oversampling and undersampling strategies which have not been
tested. The focus of this study was not to find the best method to deal with imbalanced data,

but to illustrate what imbalanced data does with the final results.

Overall, ANN showed high results but with a large spread in all scenarios and study areas.
The RF and SVM showed results similar to each other, depending on the scenario’s dataset
and study area, which algorithm resulted in higher accuracies with lower spreads. Both are
recommended for mapping irrigated agriculture. The large spread in ANN shows that it

may be suitable for detecting irrigated agriculture, but only in certain circumstances - when
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there is much data (scenario 1 final sets), and the landscape is more homogeneous (Gaza,
all scenarios). Nevertheless, the random chance of high or low accuracies is higher with
ANN than with RF and SVM (i.e., larger spread), indicating that the specific dataset used in
modelling is more important for ANN than the other two algorithms.

According to Maxwell et al., (2018), the training sample size and quality can have a greater
impact on classification accuracy than the choice of algorithm. As a result, differences in
accuracy between datasets within the same algorithm should be more pronounced than those
between different algorithms. This is supported by scenarios 1, 2, and 3, where the algorithms
show similar trends and values but exhibit greater variability within datasets. Scenario 3
demonstrates that user and producer accuracies may cross over, but the differences between
datasets are still more significant than those between algorithms. However, scenario 4 is less
conclusive since there is little variation in the high accuracies of the RF and SVM algorithms
across all sets, with some variation in Manica. At the same time, ANN shows dissimilar

trends and greater differences between sets compared to the other two algorithms.

6. Conclusion

The results of this study indicate that larger sample sizes generally lead to the higher user and
producer accuracies. However, there is an optimum after which accuracies only marginally
increase at the cost of more computing time and collection effort (Scenario 1). We also
show that the models trained on Gaza were better at classification of all classes (i.e., a more
generalized model) than in Manica (Scenario 2). In other words, the more homogeneous
landscape of Gaza lead to models that could generally classify all classes, whereas models of
the more heterogeneous Manica were overfitting towards irrigated agriculture, even though
all classes had the same number of pixels in the training data sets. Scenarios 3 and 4 show
that the field data collected should reflect the actual landscape composition and that class
labels can bias towards heterogeneous areas (i.e., no oversampling of irrigated agriculture
or mislabelling), and that random forest and support vector machine are more suitable for
classifying irrigated agriculture than the artificial neural network, as they are less sensitive
to the specific dataset.

This study provides valuable insights for practitioners and researchers mapping irrigated
agriculture in sub-Saharan Africa by means of remote sensing techniques. It highlights the
importance of carefully considering sample size and composition when collecting and using
data. African smallholder agriculture is complex, with variability in field shape, cropping
systems, and timing of agronomic activities. Based on this study, to accurately predict such

smallholder irrigated agriculture, we recommend to:
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Ensure that training data represents the area being classified and includes
sufficient samples to achieve high accuracy. This can be done best using a random
sampling design. Although perfect data is desirable, models (RF and SVM) can
tolerate some noise.

Evaluate multiple algorithms when classifying data, as different algorithms may
perform better or worse depending on the specific characteristics of the data
being classified.

Interpret classification results carefully, as accuracies alone may not correctly
represent the classification performance. Visual inspection and further
interpretation are needed to understand the results and potential limitations of

the classification fully.
Perform multiple simulations with different subsets of the data to estimate if the

training data yields robust results (i.e., minimal variation in accuracies between
sets), which can indicate that sufficient data has been collected.
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Chapter 5 - The generalisation of machine learning models

1.  Abstract

Mapping smallholder irrigation in sub-Saharan Africa using remote sensing is challenging
due to the complex nature of small-sized, irregularly shaped fields and the diversity in
agronomic activities. A robust and comprehensive set of training data is, thus, a fundamental
prerequisite for producing reliable and accurate maps. Collecting ground data in new areas
is expensive and time-consuming, making it crucial to determine the extent to which
models can be transferred between areas to save time and effort while improving prediction
accuracy. This study explores the use of the “Area of Applicability” (AOA) concept for
finetuning irrigated agriculture hotspot maps, particularly for transferred models. Spatial
cross-validation and random forest algorithms are used to assess model performance and
robustness. The research addresses the spatial-temporal transferability of machine learning
models in remote sensing by assessing their performance across different locations. Various
scenarios are considered, including simple model transfers between areas with different
climates, training on a more varied dataset, and transferring to an unsurveyed area. The
findings show that model transfer in complex landscapes remains challenging and that the
AOA does not exclude as many areas as expected when comparing different scenario results

to baseline results.
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2. Introduction

Mapping smallholder irrigation in sub-Saharan Africa (SSA) presents challenges due to the
nature of small, irregularly shaped fields with in-class variance, including inter- and mix-
cropping systems and variability in the timing of agronomic activities such as planting,
harvesting, and irrigation (Bey et al., 2020c; Nabil et al., 2020; Rufin et al., 2022; Weitkamp &
Karimi, 2023). Collecting data in new areas of smallholder farming can be expensive, labour-
intensive, and time-consuming, especially if a randomised sampling strategy is used and the
road network density is low, which is often the case in rural Africa. As a result, it is important
and relevant to explore new techniques that may help in transferring prediction models
between areas to save time, costs, and effort while producing more accurate predictions over
larger areas. Creating more impactful maps relies on the capacity of the models to generalise

effectively and to omit areas with unreliable predictions.

The complex nature of smallholder agriculture and training models makes it difficult for
trained remote sensing-based models to generalise well enough to accurately predict in
other areas. Model generalisation refers to the ability of a trained model to perform well on
new, unseen data that comes from areas that were not part of the training dataset. In other
words, how well models perform when transferred to other areas. Collecting data through
opportunistic field-sampling (which involves densely clustered training data) might result in
reduced model generalizability and transferability (Ludwig et al., 2022). This translates to the
model becoming overly specialised and having limited accuracy when making predictions
for unfamiliar regions.

Poor generalizability can also result from using overly complex models that are too focused
(i.e., overfit) on the specific environments they were trained on (Barbiero et al., 2020).
The more predictors a model has, the more complex and specialised the relationships it
learns will be. This makes the model more likely to overfit, meaning it performs well on the
training data but poorly on new, unseen data. It also increases the chances of the model
not accounting for predictor combinations in new locations (Ludwig et al., 2023). A proven
strategy to prevent overfitting and enhance model generalisation is simplifying the model
by removing predictors that don't significantly affect the outcome, such as through forward
feature selection (Ludwig et al., 2022).

After training and transferring a model to new areas, its performance is often communicated
through accuracy metrics such as the error matrices and its associated overall, user and
producer accuracy. However, simply communicating the performance is not sufficient
(Meyer & Pebesma, 2021). Additionally, validating a model using data collected within the

same geographic extent to which it was trained does not offer a valid assessment of model
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generalisation performance to new geographic extents (Maxwell et al., 2021). This is because
field samples used for model training are often not evenly distributed; they may be heavily
clustered due to opportunistic field-sampling campaigns or biased towards “known” areas,

and there may be areas without sufficient training data (Yates et al., 2018).

Another consideration, besides simplifying the model, is to verify the geographical extent to
which a model can generalise and provide meaningful predictions for new instances of the
problem. A model that is only able to deal with the data it was trained (i.e., overfitted) on is
generally considered useless, regardless of its performance on the training dataset (Barbiero
et al., 2020). When a model is transferred to a new geographical area, it assumes that the
statistical relationships learned from the training data and predictor variables still hold.
However, the new environment likely differs greatly from what was observed in the training
data. This means that classes that are not present in the training data are being classified
as another (wrong) class, and must be considered problematic (Meyer & Pebesma, 2021). In
other words, the predictions of these locations are too uncertain to be considered for further
action. Improved analysis and communication of uncertainties of spatial predictions is
therefore needed (Meyer & Pebesma, 2021).

Toeffectivelyaddress uncertainties, itis essential to define the scope within which a prediction
model can be confidently used. This can be accomplished through the utilisation of the “Area
of Applicability” (AOA) concept, as proposed by Meyer & Pebesma (2021). Understanding the
AOA becomes particularly important when generating predictions for diverse regions based
on limited field data or when extrapolating across study areas where the model’s suitability
for the new context is ambiguous (Meyer & Pebesma, 2021). Consequently, instances where
there is a high spatial model error and/or a restricted area of applicability serve as indicators

of inadequate model generalization (Ludwig et al., 2023).

Model transfer, which is the ability of a model to generalise to new areas, is an active area
of research, particularly in data-scarce regions. Traditional machine learning methods such
as random forest and support vector machine, or a combination of the two, are often used
in model transfer in the agricultural context (Gao et al., 2022; Li et al., 2020; Mills, 2008;
Orynbaikyzyetal., 2022; Phalke & Ozdogan, 2018; Wang etal., 2019). These methods have been
shown to be effective in many applications and have the advantage of being computationally
efficient and easy to implement. To our knowledge, there are no studies that focus on model

transfer and irrigated agriculture, let alone for SSA.
Deep learning (DL) models have also been shown to generalise well to new data. However,

due to their high level of data abstraction of various deep learning methods (Nowakowski et
al., 2021; Pires de Lima & Marfurt, 2020; Tong et al., 2020; Xu et al., 2020), we have chosen to
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use traditional machine learning methods because of their ease of use and interpretability.
DL models are often complex and difficult to understand, making it challenging to identify
errors or biases in the predictions. Additionally, deep learning methods require large
amounts of training data, which can be challenging to obtain in data-scarce regions. While
DL models may outperform traditional machine learning methods in some cases (e.g. Du et
al., 2022; Zhang et al., 2020), we believe that traditional methods are more suitable for our

study given our data and research questions.

African smallholder farmers are active, the new environment likely differs greatly from what
was observed in the training data, resulting in the model underfitting the training data. To
our knowledge, the AOA has not been applied to irrigation mapping before, or has it been
applied in SSA. Furthermore, the AOA has not been integrated into previous model transfer
studies due to its recent emergence. Given its novelty, we aim to pioneer its application in the
field and specifically focus on its implementation in SSA.

When transferring models, particularly those involving numerous predictor variables,
there is a concern of overfitting. This arises when the model encounters pixel values that
correspond to a class it hasn't encountered before. This scenario is likely to occur in SSA,
where smallholder farmers employ diverse irrigation methods across different regions.
To address this issue when transferring models to focus on SSA’s irrigation patterns,
it becomes essential to utilise the AOA to exclude regions that the model hasn’t been
exposed to. Furthermore, simplifying models aids in creating more broadly applicable
models that are suitable for transferability, prompting the incorporation of feature

selection.

In this study, we investigate the extent to which transferring remote sensing models to new
geographic areas with distinct land use, climate, and agricultural practices can be done,
using feature selection and the AOA. Since creating new training data and models for these
areas is often laborious and time-consuming, exploring the geographic generalisation of
region-specific models can contribute considerably to early mapping exercises and research,

particularly given the growing availability of remote sensing data.

3. Method

3.1. Studyarea
The research was carried out across four distinct regions in Mozambique: Chokwe and
Xai-Xai in the Gaza province, and Manica and Catandica in the Manica province (Figure

2). These specific regions were selected due to their diverse agroecological features and the
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presence of both small-scale and large-scale irrigated agricultural systems. The case studies

encompassed an approximate area of 40x40 km.

Within the Manica province, the landscape is characterised by mountains and is supported
by small streams that serve as sources for irrigation. Farmers redirect the water into earthen
canals known as “furrows” and employ techniques like sprinkler irrigation, small pumps, and
bucketirrigation. The size of these systems is relatively smaller compared to those in the Gaza
province, and they adapt based on water availability. During the dry season, horticultural

crops receive irrigation, while maise is cultivated during the rainy season.

In the Gaza province, irrigation systems, both large and small in scale, are situated along
the banks of the Limpopo River. Flood-based irrigation practices are common, and pumps
are utilised to access elevated areas. In proximity to Xai-Xai, irrigated zones with shallow
groundwater tables necessitate drainage post the rainy season. The agricultural focus
during the irrigation season includes horticulture and maise, whereas rice and maise take

precedence during the rainy season.

A catandica A
© S0 180km
-—
7/ Manica
77 Chokwe
7] Xai-Xai

Figure 2 The four study areas in Mozambique, from top to bottom: Catandica, Manica (Manica province),

Chokwe, and Xai-Xai (Gaza province).
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3.2. Model training
Spatial feature selection ffs

Meyer et al., (2018) propose using forward feature selection along with a study-specific cross-
validation strategy to choose predictor variables suitable for spatial prediction. The adoption
of ‘spatial feature selection’ or ffs, which incorporates spatial cross-validation during
selection, prioritises variables that improve the predictive performance in new geographical
regions (Ludwig et al., 2023). Essentially, this means grouping pixels from the same polygon
within the same training fold, thereby creating training and validation data clusters based

on polygons.
AOA

While models are often assumed to be applicable across the entirety of the area of interest,
there are instances where the suitability of the model in new environments can be
unsuitable. Therefore, it becomes necessary to quantify the dissimilarity between predictors
at new locations and those present in the training data. This Dissimilarity Index (DI) can be
computed by determining the minimum distance to training data in the weighted predictor
space, which is then normalised by the average distances among the training data (Meyer &
Pebesma, 2021).

To pinpoint regions that significantly differ from the training data and thus cannot be reliably
used for predictions, the derivation of an AOA necessitates setting a DI threshold. This
threshold is determined by the aoa function in the CARET package (Kuhn, 2019), version 0.8.1
as used, which extracts the threshold from the training data by identifying the maximum
dissimilarity among the training data after the removal of outliers through cross-validation.

For specific details, we refer to (Meyer & Pebesma, 2021).
Classification

To investigate the potential transferability of machine learning models for predicting

irrigated agriculture, various models will be trained and explored in two distinct scenarios:

e Scenario 1: Simple model transfers between two areas with different climates:
assessing the extent to which a model trained on one area can be applied to
another very different area, without modifications. This scenario includes a
baseline model, in which a model is trained and applied to the same area.
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* Scenario 2: Training on a more varied dataset and transfer to ‘unseen’ area:
assessing the extent to which a model trained on three varying areas can be
applied to a fourth, assuming it contains at least some of the relationships learned

by the model.

For each scenario, the study will compare a transferred model (e.g. from Chokwe to Manica)
with a locally-trained model (e.g. from Chokwe to Chokwe) and evaluate the transferability
of the model, either in time or space. This will be done for two areas, Chokwe and Manica.
At the same time, we will run each model using the caret::train and caret:ffs functions, the
first uses all variables, the second uses feature selection to exclude variables. Each model is
replicated 4 times with different seed values.

Additionally, each model will be repeated with five spatial cross-validations to enhance the
model’s robustness. This allows for a more accurate assessment of the model’s performance
and reduces the risk of overfitting due to spatial autocorrelation. Random forest (RF) will be

used in each scenario.

Table 1 provides a detailed overview of each scenario and its respective objectives. In total,
each model will be run 4 times for ‘all variables (train)’ and ‘feature selection (ffs) per scenario
(six in total), resulting in 6 x 4 x 2 = 48 models (excluding the internal cross-validation etc).
To effectively visualise this, we will make use of hotspot maps for irrigated agriculture,
as well as the AOA. We will combine these to make final classification maps, in which the
hotspot maps can also show negative values, indicating classified irrigation that is highly
unlikely to be so. In other words, the AOA hotspot values (range 0 — 4) are subtracted from
the irrigation hotspot values (range o - 4), potentially resulting in negative values if only one
model classified irrigation, but four AOA models found the pixel outside of the acceptable
range (1-4=-3).

Table 1 Description of the different transferability scenarios explored in this study.

Model Trainlocation Testlocation Allvariables Feature
selection

Scenario1 1 Chokwe Chokwe A B

2 Manica (baseline) Chokwe A B

3 Manica Manica A B

4 Chokwe (baseline) Manica A B
Scenario2 5 Chokwe + Catandica + Xai-Xai Manica A B

6 Manica + Catandica + Xai-Xai  Chokwe A B
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Within a test location, the different models are trained with the same training data sample
size (determined by the baseline model's training data). The multiple location transfer
models are trained on three different locations, each contributing one third of the total
training data sample size. We have done this to take out the influence of training data size on

model transferability, so that we could focus on the model training and AOA aspects.

Allcodeand datacanbe found onthe GitHub repository:https://github.com/TimonWeitkamp/

model-transferability
Satellite data

Satellite data was collected within the Digital Earth Africa (DEA) ‘sandbox’, which provides
access to Open Data Cube products in a Jupyter Notebook environmentz. Sentinel- 2
geomedian products (a robust high-dimensional statistic like the normal median that
maintains relationships between spectral bands, DEA, 2021; Roberts et al., 2018) were
generated at 10-meter resolution for a 6-monthly composite, covering April — September
2020, corresponding to the dry season. Images with more than 30% cloud cover were filtered

out.

From Sentinel-2 we calculated the Normalised Difference Vegetation Index (NDVI), Bare Soil
Index (BSI), and Normalised Difference Water Index (NDW1I), using the DEA indices package
for the Sentinel-2 composites (Wellington & Renzullo, 2021). Three second-order statistics
(Median Absolute Deviations (MADs)) were also calculated, which are change statistics based
on the geomedian: the Euclidean (EMAD, based on Euclidean distance), Spectral (SMAD,
based on cosine distance), and Bray-Curtis (BCMAD, based on Bray-Curtis dissimilarity)
MADs (Roberts et al., 2018). Wellington & Renzullo (2021) used these change statistics, as
well as a few of the indices in their classification of irrigated areas, with success. We used
these indices and statistics to cover the different phases of croplands, from browning (BSI)
to greening (NDVI), the NDWI for water detection, while the MADs are suitable for change
detection, particularly for irrigation (Wellington & Renzullo, 2021).

All bands and indices were merged into one dataset, forming a 14-variable dataset (Table 2).

2 Sandbox link and explanation can be found on https://docs.digitalearthafrica.org/en/latest/sandbox/

index.html
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Table 2 Overview of variables per composite time-length

Group Variable Equation
Sentinel-2  Blue
Green
Red
Near Infrared (NIR)
Red-edge 1 (RE1)
Red-edge 2 (RE2)
Shortwave Infrared 1 (SWIR1)
Shortwave Infrared 2 (SWIR2)
Indices Sz Normalised Difference Vegetation Index (NDVI) (NIR - Red)/(NIR + Red)
Normalised Difference Water Index (NDWI) (NIR — SWIR1)/(NIR + SWIR1)
Bare Soil Index (BSI) ((Red + SWIR1) - (NIR + Blue))/
((Red + SWIR1) + (NIR + Blue))
Chlorophyll index (CI) (NIR/Red Edge1) -1
Temporal 3 MADS S2 See Roberts et al. (2018) and
variation Wellington and Renzullo (2021)
for more details on equations
Sentinel-1  VV
VH
IndicesS1  RVI xVH /[ (VV +VH)

3.3. Accuracy assessment

We assessed the performance of the models by utilising metrics such as overall map accuracy,

user accuracy, and producer accuracy. To evaluate these models, we employed a cross-

validation approach. This involved dividing the training data into folds, and subsequently,

the model with the highest performance was compared against 20% of the validation data.

The outcomes for each model were then recorded in a confusion matrix. It is worth noting

that overall accuracy can exhibit bias towards the most prevalent class within the training

data. Therefore, it is also valuable to take into consideration both user accuracy and producer

accuracy, as these metrics provide more detailed insights into the model’s performance for

specific classes.

The confusion matrices can be found on GitHub: https://github.com/TimonWeitkamp/

model-transferability/tree/main/confusion_matrices
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4. Results

In this study, we investigate the extent to which transferring remote sensing models to new
geographic areas with distinct land use, climate, and agricultural practices can be done,
using feature selection and the AOA. We will present the overall accuracy, and the user and
producer accuracies for irrigated agriculture of the baseline study and the two transfers, for
both the feature selection model and the model that uses all 14 variables. A visual inspection
then follows for two case studies: Chokwe and Manica, where we take a closer look at the

extent of irrigated agriculture.

4.1.  Accuracies

Figure 3 shows the accuracies of each scenario and model; the producer and user accuracy
are for irrigated agriculture. The accuracies are split over whether the variables are selected
using caret:ffs or caret:train, and presented per validation location (Chokwe and Manica). The
scenarios compared are the baseline scenario, multiple locations transfer, or single location

transfer.

It is evident that the baseline scenarios yield the highest accuracies on all three metrics,
for both locations (>80%). Both the multiple and single location transfer accuracies are low
(below 50% and 30%, respectively) for Chokwe indicating unsuitable transfer. This means
that the other three locations from which the training data comes have different landcover
types or temporal patterns than Chokwe. A similar situation occurs for Manica, although
here the overall accuracy is high in the transferred models (>75%). The user and producer
accuracies of the multiple and single location transfer models remain low (also below 50%
and 30%, respectively). The high overall accuracy indicates that other classes are likely better
classified than irrigated agriculture, perhaps because those are prevalent compared to

irrigated agriculture.

As all training data for the models was the same size per validation location, Figure 3 also
shows that including multiple locations leads to (slightly) higher accuracies than when only
a single location is used when using the train function. However, when using the ffs function,
the specific dataset used (i.e., seed value) could lead to individual results of single location
transfers to be higher than that of multiple location transfer models. Generally, the multiple

locations have higher accuracies.
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Figure 3 Accuracies per scenario and variable selection method. The multiple points of the same scenario

show the accuracies per seed value (i.e., replication).

4.2. Visual inspection Chokwe

4.2.1. AOAmaps

We start by showing the hotspot maps of the AOA, where a value of 4 indicates that all four
AOA models predicted that those areas fall outside of the acceptable range (Figure 4). The top
row of the figure shows the AOA maps of ffs and the bottom row shows train results.

If we compare six outputs, we can see two noticeable things. The first is that the three train
AOA maps are all more similar to each other than the three of ffs. The train maps almost
exclusively show value 4 and on the same locations (mainly the Limpopo River, roads, and
wetlands) and extent. The second point is that the ffs maps show a wider range of values and
where these can be found. The baseline map has the largest AOA, followed by the multiple
location model which shows similar locations of exclusion, but geared towards the urban

areas, mostly with value 1. The single location transfer, i.e., the Manica model applied
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Figure 4 AOA hotspot map of Chokwe. The values in the legend show how many models classified a pixel
falling outside of the acceptable range. A value of 4 indicates that all four AOA models predicted that those
areas fall outside of the acceptable range.
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in Chokwe, shows the same urban areas but now with value 4, as well as more exclusion
throughout the whole study area.

Comparing the scenarios shows that the two baseline AOA maps are relatively similar to each
other. However, in line with the previous comparison of ffs with train, the multiple and single
location models are very dissimilar. Looking at this, we might expect to see similar irrigation

maps for the three scenarios when using train and more diverging maps when using ffs.

4.2.2. Irrigation classification maps

Figure 5 shows the irrigation classification maps for the different scenarios and variable
selection methods. The baselines show clear areas of agriculture with value 4, especially the
train models seem certain. The two maps are not completely the same, but similar patterns
can be found in where irrigation occurs. The ffs models show more variation in hotspot
values, showing more areas of 1 and 2 than the frain models. The two transfer scenarios
show irrigated agriculture on the whole map, with different degrees of confidence. The two
train models show value 4 almost everywhere, where the ffs models at least show these areas
as values 1 and 2. This indicates that although the accuracies of ffs in Figure 3 are not very
different than those of the train models, the ffs model seems more likely. Nevertheless, the

four maps of the transfer scenarios vastly overestimate the extent, as we show in section 3.4.
Next, we will look at what is actually classified as irrigated agriculture by the transfer models.

All transfer models and feature selection methods misclassify vast areas of light vegetation,
in addition to classifying irrigation.
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Figure 5 Irrigation classification hotspot map
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Figure 6 Combined hotspot map of AOA and irrigated agriculture.
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4.2.3. Combined

Figure 6 shows the combined map of the previous AOA and irrigation hotspot maps (Figure
4 and Figure 5). The hotspot values of the AOA are subtracted from the irrigated agriculture
hotspots to subtract the uncertainty from the classification and resulting in pixel values of -3
to +4. A pixel value below 2 can be considered unreliable, and -3 means one model classified
irrigation, and 4 AOA models found that pixel not belonging in the acceptable DI range,
irrespectable of the class that pixel was classified as

Considering the new maps in Figure 6, we mainly see changes in the ffs maps, especially
the single transfer map. This final map has little overlap with the baseline map and mostly
classifies rainfed agriculture as irrigation. The other ffs map and the two train maps seem
similar but vastly overestimate areas of irrigated agriculture. The AOA did not take away

much uncertainty of the classified maps.

4.3. Visual inspection Manica

4.3.1. AOA maps

Figure 7 shows the AOA hotspot maps for Manica for the different scenarios and feature
selection methods. The baseline maps show pixels falling outside of the range throughout the
study area. Furthermore, the lake in the south has value 4 in all transfer models, indicating
that the water classes of the other areas are dissimilar to the one in Manica. The two train
transfer maps are similar to each other, and other than the lake itself, also similar to the
baseline map. The ffs transfer maps are dissimilar to each other, in pixels falling outside of

the acceptle DI range and their value.
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Figure 7 AOA hotspot maps of Manica. The values in the legend show how many models classified a pixel

falling outside of the acceptable range. A value of 4 indicates that all four AOA models predicted that those
areas fall outside of the acceptable range.
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4.3.2. Irrigation classification maps

Figure 8 shows the irrigation hotspot maps for the different scenarios. Where the three train
maps of Chokwe mostly showed value 4 pixels, that is only the case for two of the three maps
in Manica. The multiple location transfer map is different, with mainly value 1. Irrigated
agriculture is also classified all over the study area, and with different agreements in each
scenario. The ffs maps mainly show hotspot values of 1 and 2, again spread out over the study

area, with a few clusters of value 4.

Next, we will look at what is actually classified as irrigated agriculture by the transfer models.
Starting with the multiple location, we see that irrigated agriculture is correctly classified,
but mostly trees along the streams and small wetlands are (wrongly) classified as irrigation,
for both feature collection methods. The single location transfer models follow the same

trends.

4.3.3. Combined

Figure 9 shows the combined AOA minus irrigation hotspot maps, which mostly show
positive values of 2 or higher. Especially the train maps show values of 3 and 4. The train maps
classify much more irrigated agriculture than the ffs maps in each scenario, and the multiple
location transfer map shows the least irrigated agriculture. Both transfer scenarios also show
less irrigated agriculture than the baseline study, which is the other way around from what

we saw in Chokwe.

This indicates that irrigated agriculture in the other three areas shows different spectral

patterns than in Manica.

4.4. Hectares of irrigated agriculture

Figure 10 shows the number of hectares classified in the combined hotspot maps, per hotspot
value. It shows that not a lot of irrigated area was classified that fell outside of the AOA,
otherwise the hectares belonging to values -3 to -1 would be larger. The figure also shows
that the train maps consistently showed more irrigated agriculture in the 4-value category,
whereas the ffs models classified more hectares in the 1 to 3 value categories. This shows
that the ffs models are more uncertain than the train models, which we also saw in the visual

inspection.

In Chokwe, both of the transferred maps overestimate how much irrigated agriculture
there is (class 4), compared to the baseline. They also classify the 2 and 3 value class, but less
extreme. In Manica, the baseline map shows the highest estimated hectares, meaning the
transferred models underestimate the extent in comparison.
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Figure 8 Irrigation classification maps
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Figure 9 Combined AOA and irrigation map
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5. Discussion

This study explored three aspects, namely transferring RS-based models between different
geographical regions and how feature selection and the Area of Application (AOA) could be

used to make maps with higher accuracies and less uncertainties.

Starting with the transferring of models, we explored two scenarios: training a model on data
from three different areas (multiple location transfer) and training a model on data from one
area (single location transfer). We did this twice, for two study areas, Chokwe that has a more
homogeneous landscape and is drier than Manica, which has a more heterogeneous landscape
and is wetter. The two other areas that were used for training the multiple location transfer are

similar in climate to the other two areas but have slightly different landscape characteristics.

The results show that compared to the baseline maps, both transfer models under-performed,
with the single location models performing slightly worse. There can be a few reasons for
this. From other studies (Weitkamp et al., 2023) we know that irrigated agriculture can
successfully be classified in these areas, hence the training data should be sufficient. This
is also confirmed with the baseline studies, which show accuracies of over 75%. Yet the
difference is the overall number of variables used. In the other study, we used data of the
rain season in addition to the dry season, which we used in this study. We hypothesise that if
more variables were present, the single location transfer model would not be affected much
in its training, as it might be overfit for the trained location, and hence would still misclassify
much of the area of the new location. However, the multiple location model will have had
more instances to learn from the statistical relationships of the same landcovers but under
different circumstances. We expect that included more predictor variables in the first place
might lead to better results for the multiple location transfer scenarios.

We also compared the performances of the models when using feature selection or using
all predictor variables. Using the hotspots maps, we see that the train models are more
confident in their classifications, which we can derive from the vast areas of value 4 and the
low number of hectares for the other hotspot values. The ffs models also show many value
4 areas, but lower, and they show more hectares for the values 3 and 2. The ffs models are
simpler, usually only two to five variables were used (not shown in results), compared to the

14 of the train models, with only slightly lower performances.

Itis difficult to say if the train models overfit to the new locations more so than the ffs models,
as both vastly overestimated the extent of irrigated agriculture, compared to the baselines.
But considering that the ffs models show more nuance in their hotspot values, we might

consider this as a proxy for generalisation. This aspect needs to be explored some more in
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future studies — in other words, can the hotspot maps be used as proxy for how well models

generalise their assumptions?

Finally, from the overestimated maps (compared to the baselines) we know that the predictions
of some locations are too uncertain to be considered for further action, for example to base
decision-making on. These areas can be delineated though the AOA, in principle. Yet, the
AOA maps miss out on much of these areas, in all transfer scenarios, areas, and variable
selection methods. This is surprising, as we expected that, at least for the single location
transfer model, many locations would fall outside of the acceptable dissimilarity index (DI)
range. This threshold is determined automatically, we left the settings to their defaults. From
these findings, we can speculate that the landcovers found in Chokwe and Manica may belong
to different classes, spectrally speaking they are very similar, but at a hydrological different
scale. For example, the transfer maps applied to Chokwe classified light vegetation as
irrigated agriculture, whilst the transfer maps applied to Manica classified dense vegetation
as irrigated agriculture. Seemingly, both classes have similar spectral responses as irrigated

agriculture in other areas.

Van Passel et al. (2020) conducted a study where they trained models on landscapes of both
uniform and diverse compositions. Their goal was to investigate whether models trained on
diverse landscapes would outperform those trained on uniform ones when applied to new
environments, given that the former capture a broader range of environmental variations, as
suggested by previous research. Surprisingly, their findings did not align with this hypothesis.
Contrary to expectations, models trained on arid landscapes and then transferred to wetter
settings exhibited better performance compared to the reverse scenario. This unexpected

outcome had also been observed by Tsalyuk et al. (2017).

Although the differences in user and producer accuracies of irrigated agriculture are small,
the models trained in Manica (wetter) and applied to Chokwe (drier) performed slightly better.
This is not in line with the findings of (Tsalyuk et al., 2017; Van Passel et al., 2020). However, the
overall accuracy of the Chokwe model (and applied to Manica) is high, over 75%. This indicates
that other classes are correctly classified and are likely more present, such as dense vegetation
(see error matrices on GitHub). We speculate that irrigated agriculture is more difficult to
classify in heterogeneous, wet landscapes, where other classes are very similar. When those
models are applied to drier areas, it becomes ‘easier’ to distinguish irrigated agriculture from
the surrounding dry areas. However, the classification maps of Chokwe show that irrigated
agriculture was classified over the whole study area. Note that the single transfer ffs models
mostly classified some rainfed areas in the north of the study area and a few irrigated areas,

whereas the train models classified the majority of the study area as irrigated agriculture.
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Ludwig et al., (2023) summarise that a high spatial model error and/or a small area of
applicability is an indication of poor model generalisation. This would mean that our models,
which have hight spatial model error but a large area of applicability, hint at generalisability.
Yet the visual inspection clearly shows the maps overestimate irrigated agriculture. We do not
think it is the method of calculating the DI or the threshold, but the simplicity of the models
in the first place, combined with the complexity of the landscape. In their study, (Ludwig et
al., 2022) also compare models with 12 and 5 variables (also with a similar methodology),
but found more meaningful AOA results, but in a less complex landscape. To explore this
hypothesis, a future study could include tens of variables to analyse if the AOA better reflects
the expected results.

Limitations to the study

We used random forest in this study, but other results may have been achieved if we used
other algorithms, such as support vector machine. From our experience (Weitkamp et al.,
2023; Weitkamp & Karimi, 2023), these two algorithms performed similarly, hence we only
used one.

As noted earlier, the models may have been too simple in the first place (14 variables in total).
Although this was enough for the baseline maps, properly training models with the intent to

transfer them may require more predictor variables.

We also designed the transfer models to have the same training data size as the baseline
model, but with different compositions. Training the models on larger datasets also gives the
models more opportunities to learn different statistical relationships, potentially improving
the generalisability.

The combined use of the predictor variables and training data size may have been a limitation
for properly calculating the AOA. We have not explored this aspect, but we expect this to have

some influence on size of the AOA.

6. Conclusion

In this research we explored the possibilities of transferring models and using the area of
application (AOA) to exclude pixels from the classification that are likely misclassified. We
combined the classified maps with the AOA maps to update hotspots maps, which show

where irrigated agriculture can likely be found.
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We found that the transferred models overestimated the extent of irrigated agriculture,
whether three separate locations are used for training, or a single location — the multiple

location models only had a marginally higher accuracies than the single location models.

Additionally, we set out to understand how the AOA would change for the different scenarios
and found that in our case, the AOA insufficiently masks out misclassified pixels. A possible
explanation could be the training data size or number of predictor variables, which can be

increased in a future study.

We still believe that the combination of irrigation hotspots and AOA seems like a valid strategy
to further highlight the likely misclassified irrigated areas, at least when assessing the
baseline maps. However, more research is needed to determine the minimum requirements

of the AOA models in terms of landscape, training data size, and predictor variables.

Predicting where irrigated agriculture takes place with higher certainties gives better
insights in spatial and temporal trends of irrigation. It also allows policy makers to make
better decisions on where interventions may be required and where farmers manage by
themselves. Finally, the maps and derived statistics give a more realistic view of what is

happening in the field, minimising the need for extensive field visits.
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General discussion

Timon Weitkamp






This research investigated the mapping of the spatial-temporal extent of irrigated agriculture
in sub-Saharan Africa (SSA) using remote sensing (RS) data and how modelling choices
influence these maps. The mapping of irrigated agriculture holds considerable relevance for
supportingirrigation development, monitoring water use, and tracking changesinland cover.
Nonetheless, there are several challenges associated with mapping smallholder irrigation.
The highly diverse and ever-changing environments where smallholder farmersirrigate make
it challenging to differentiate between classes with similar spectral behaviours. Moreover,
the presence of small, irregularly shaped fields, inter- and mixed-cropping systems, and the
variability in the timing of agricultural practices like planting, harvesting, and irrigation
further contribute to the complexity of the task. Additionally, mapping irrigated agriculture
requires knowledge of the surrounding land covers to distinguish them. Ground data was
collected from various land covers in four areas of Mozambique, covering a wide range of
landscape and agricultural practices. I used it to train machine learning models about the
relationships between land covers and their spectral properties.

This research investigates how the classification models are sensitive to data inputs, which
depend on human choices. The primary objective is to identify unconscious and undesired
influences on irrigation mapping, report and reflect on them, and, where necessary, avoid
them. This research demonstrates how remote sensing-based mapping of irrigated agriculture
is sensitive to the many methodological choices that often remain hidden or implicit.

My research addressed four key research questions (RQs) related to the process of irrigation
classification:

- RQ1: How have recent RS-based irrigation mapping projects in SSA consciously
and unconsciously defined and classified irrigated agriculture, and how do these
choices impact irrigation mapping?

- RQ2: How does the selection of algorithms and composite lengths influence the
accuracy of predicting irrigated agriculture in various landscapes and cropping

systems?

- RQ3: How does the size and composition of training data impact the accuracy of

predicting irrigated agriculture in diverse landscapes and cropping systems?

- RQ4:What approaches can enable the successful application of models trained on

one area to other areas, minimising the need for extensive field data collection?

The following section will briefly reflect on these questions.
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1.  Insights and implications of irrigation mapping

Mapping irrigated agriculture based on remote sensing data is a complex process involving
mapping vegetation and knowing how to differentiate between irrigated, rainfed, and non-
crop vegetation. Determining how farmers manage the fields, whether it is held privately
or publicly, individually or collectively, or through what development process it came about
(farmer-led irrigation development or through external intervention) requires information
beyond satellite imagery. While RS-derived maps may show small and fragmented irrigated
areas, factors like farmers’ access to markets, inputs, and finance play a crucial role in
understanding the nature of irrigation practices. This non-satellite information necessitates
on-the-ground interviews and a deep understanding of local management practices. As a
result, a map of irrigated agriculture often provides approximations rather than definitive
conclusions, and itis especially difficult to dojustice to small-scale, individual, and migrating
irrigation practices.
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Figure 1 Schematic overview of the many aspects to consider when making and reading a map of irrigated

agriculture.
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Figure 1 (introduced in Chapter 1) illustrates the various elements involved in the creation
of a map, including the individuals responsible for its production (Production side), the
intended users (Application side), and the subject being mapped, which in this case is irrigated
agriculture (Feature side). I re-introduce it here to illustrate the various elements that play a
role in what ends on the map and summarise how the four research questions work together

to inspect some of these elements.

1.1.  Choices in the classification process.

Maps of irrigated agriculture in SSA vary highly in the extent and location of where they
situate irrigation. It is not always fully clear from where these differences emerge. Therefore,
it is essential to approach new studies in this field with a critical mindset, recognising the
value of exploring alternative methods and conducting context-specific investigations

(Maxwell et al., 2018; Ramezan et al., 2021).

In Chapter 2, I analyse recent academic journal articles published since the launch of the
Sentinel satellites in 2015. Initially, I intended to conduct a content analysis of the modelling
choices and their implications across these studies. However, it became apparent that there

was a lack of reporting on these choices, making reproducing their methods impossible,

i. Training & validation data
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fil. Presentation
6. Accuracy 7. Map tempaorality 8. Code and data sharing
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an erroriconfusion
miatri.

Figure 2 Framework overview containing the eight steps divided over three elements.

165



Chapter 6 - General discussion

and specific steps had to be estimated or guessed. Without sufficient reporting on the
methodological choices, the map maker masks their assumptions and intentions (Braun,
2021). I developed a framework to explicitly assess modelling choices, covering eight steps
that all classification studies typically go through (RQ 1), if not explicitly, then implicitly or
by default. The framework (Figure 2) allows me and others to evaluate the reproducibility of
results across different studies. I analysed each article to determine which modelling choices
and steps the authors reported on and categorised them into three levels: fully reported,
partially reported, and not reported. Among the eight steps analysed, steps two, three, and
seven (nomenclatures, field data collection, and map seasonality) were reported the most. In
contrast, steps one, four and eight (the sampling design, algorithm adequacy, and data and
code sharing) received the least attention. None of the articles was complete on every step,

and no single article covered all the steps comprehensively.

The results of Chapter 2 highlight that the absence of transparent choices hampers the
accurate evaluation of irrigated agriculture’s extent, particularly smallholder irrigation, and
can affect mapping accuracy significantly. Making these choices explicit not only aids in
the evaluation of maps but also allows for the sharing and reusing of relevant components,

fostering transparency and collaboration in remote sensing studies.

Furthermore, sharing the elements used in the classification process openly is essential. It
enables remote sensing scientists to assess the reliability of new methods and modelling
techniques. While authors typically go through the first seven steps of the classification
framework, they often leave some steps undocumented in the final publication.
Understanding the reasons behind this behaviour requires further investigation through

surveys and interviews with remote sensing scientists.

The framework can also serve as a self-assessment tool, ensuring data, models, and code are
included before publication. Journals, funders, and institutions can make it a publication
prerequisite, offering recognition for exemplary practices. Thorough documentation in
irrigation mapping aids targeted government support, minimises resource waste, and
fosters global collaboration, advancing irrigation practices and benefiting agriculture and

food security.

1.2.  Algorithms and composite lengths.

Widely used algorithms in irrigation classification include random forest (RF), support vector
machine (SVM), artificial neural networks (ANN), and k-nearest neighbours (k-NN). These
algorithms are trained using field data and satellite data, often in the form of composites.
Composites are commonly used to generate cloud-free and spatially consistent images from

satellite time series by aggregating summary measures from the time series, such as the
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mean pixel value. Creating monthly, seasonal, or annual composites can effectively capture

vegetation phenology.

In Chapter 3, I examined how different algorithms and composite lengths (Steps 4 & 5, Table
1) affect the accuracy of predicting irrigated agriculture in Mozambique (RQ 2). Specifically,
I evaluate how four classifiers (RF, SVM, ANN, and k-NN) and four composite lengths (1 x
12-monthly, 2 x 6-monthly, 4 x 3-monthly, and 6 x 2-monthly) classify irrigated agriculture. I
present the results using “agreement maps” that illustrate the consensus among the models
regarding the classification of an area as irrigated agriculture or non-irrigated. These maps
highlight the presence of core areas of irrigated agriculture, known as hotspots, which show
ahighlevel of certainty. Surrounding these hotspots is an uncertainty zone where the models
show less agreement. These maps can combine the strengths of multiple models and reduce
the possibility of false positives (areas incorrectly classified as irrigated agriculture). This
method is unique as it focuses on a specific class distribution in the area and classification
certainty. My analysis, including 16 models, revealed that the composite length and algorithm
choice substantially influence the results. Therefore, it is crucial to integrate the findings
from various models to address model-specific biases. These findings call for three key

recommendations.

- The algorithm selection strongly affects the accuracy of remote sensing-based
models for identifying irrigated agriculture. I observed that ANN, SVMs, and
RF all performed effectively in classifying irrigated areas. However, there was no
single “best” algorithm. I recommend using at least two algorithms to address the

landscape’s heterogeneous and homogeneous characteristics adequately.

- The composite length is essential in accurately identifying irrigated agriculture
in diverse landscapes. I found shorter composites more suitable for complex and
heterogeneous landscapes. On the other hand, longer composites are sufficient
for more uniform landscapes. Promising options, such as 6-month and 3-month
composites, offer reduced computation time and data size advantages while still

achieving high classification accuracy.

- My analysis demonstrates that combining models with different composite
lengths and algorithms into agreement maps improves the accuracy of identifying
irrigated agriculture. These agreement maps provide valuable insights that aid
in decision-making processes and assist in prioritising targeted field surveys or
management decisions. Additionally, identifying irrigation hotspots through
these maps helps decision-makers better understand irrigation dynamics, leading

to more informed and effective actions.
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1.3. Training data size and composition.

Chapter 4 centres on the impact of training sample size and composition (Steps 1-3, Table
1) on the accuracy of RS classification for mapping smallholder irrigated agriculture in SSA
(RQ 3). In particular, the optimal number of samples, their quality, and the class imbalance
issue are investigated. Models were made on the province scale (i.e., combining data from
the two study areas per province) to include more variety in the training data. Generally,
the landscape in Gaza province is more homogeneous, and the agricultural fields are more
regular and larger than in Manica, where the landscape is more complex, and fields follow the
contours of the topography more. Manica also has more rainfall, increasing the complexity of

distinguishing cropland from other vegetation classes.

Collecting extensive and high-quality training samples presents difficulties due to limitations
in time, access, and interpretability. As a result, class imbalance, where certain classes are
more abundant in the training data, can lead to challenges in accurately classifying minority
classes. The sample size can affect the choice of algorithm, as some algorithms require a
larger dataset than others. These challenges are particularly relevant in the context of
smallholder irrigated agriculture, as it is often underrepresented in datasets.

In addition to the dataset’s size, training data biases can affect classification outcomes.
These biases can arise from limited local knowledge, mislabelling, and the human aspect of
interpretation. While some studies have explored the effects of sample size (e.g., Elmes et
al., 2020; Ramezan et al., 2021), I found no studies that have investigated the impact of these
biases in the training data set on classification results and how choices made by the data

collector result in changing accuracies.

The scenarios explored in Chapter 4 show that larger sample sizes generally improve user
and producer accuracies; these are class-specific accuracies that indicate whether that class
is over- or underestimated. However, there is a point of diminishing returns where further
increases in sample size only marginally increase accuracy and require more resources
(Scenario 1). In Scenario 2, models trained on data from Gaza province (drier and more
homogeneous) perform better overall but not so on irrigated agriculture, indicating a more
generalised model. The model trained on data from Manica (wetter and more heterogenous)
favoured irrigated agriculture more than other classes, overestimating the extent of the class
(i.e., overfitting). In other words, the Gaza model could better predict all classes without
much preference towards single classes. In contrast, the Manica model favoured irrigated
agriculture more than other classes. Scenarios 3 and 4 highlight the importance of collecting
representative field data and using suitable algorithms, such as RF and SVM, which are less

sensitive to specific dataset characteristics than the ANN.
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I replicated the simulations 25 times, allowing me to deduce that a considerable range of
accuracies indicates that particular outcomes rely more on the dataset used for classification
than other factors like the algorithm or variables. This variability implies that the model’s
stability and ability to generalise are compromised when there is a wider distribution of

accuracy values.

Agreement maps show the influence of training data biases on classifying farmer-led
and conventional irrigation. In the region surrounding Chokwe, small-scale irrigation
developed by smallholder farmers can be mainly found on the north side of the Limpopo
River, whereas conventional irrigation is more prevalent on the south side. The agreement
maps revealed that, in most scenarios, the areas with small-scale irrigation were consistently
underrepresented when using data containing more irrigated agriculture, in contrast to the

conventional irrigation areas.
Based on the above findings, the following conclusions emerge:

- The quality of training data is one of the most determining factors in successfully
mapping smallholder irrigation. Therefore, training data must reflect the target
area and include an adequate number of samples for high accuracy, preferably
using a random sampling design. Some noise in the data can be tolerated by
models such as RF and SVM.

- There is no single algorithm that provides the best results in all circumstances.
Given the data’s specific characteristics, evaluating multiple algorithms is needed

to find the best performer.

- Accuracy values alone may not fully represent classification performance. Visual
inspection and further analysis are necessary to understand the results and their
limitations comprehensively.

- Multiple replications with different data subsets are needed to assess the training
data’s robustness. Slight variations in accuracies between replications indicate

sufficient training data collection.

1.4. Modeltransferability and generalisability

Chapter 5 investigates whether transferring models between regions can improve model
performance and save resources compared to collecting new data (RQ 4). I explored three
key aspects: the transfer of RS-based models between different geographical regions, the

impact of feature selection on model accuracy, and the use of the Area of Application (AOA) to
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improve map reliability. The study focused on two distinct study areas, Chokwe and Manica,

with differing landscapes and climates.

Firstly, the study examined the transferability of RS-based models. I investigated two
scenarios: multiple location transfer, where I trained models on data from three different
areas, and single location transfer, where I trained models on one area. Both transfer models
underperformed compared to baseline maps, with single-location models performing
slightly worse. This could be attributed to the limited number of predictor variables used in
the study, as including more variables might have improved the multiple location transfer

models’ ability to adapt to diverse landscapes.

Additionally, the study compared model performances with and without feature selection.
The simpler models with feature selection exhibited more confidence in their classifications.
However, the differences were marginal compared to the models that use all variables.

The study also revealed that the predictions of some areas were too uncertain for practical
decision-making. I expected the AOA maps to identify these uncertain areas. However, they
did not do so effectively across all transfer scenarios and variable selection methods. This
led to speculation that different land cover classes in Chokwe and Manica may be similar,
spectrally speaking. For example, dense vegetation in one area might resemble irrigated

agriculture in another, complicating the classification process.

Notably, despite having high spatial model errors, the models in this study displayed a large
area of applicability, suggesting a degree of generalizability. However, a visual inspection of
the maps revealed a consistent overestimation of irrigated agriculture. This overestimation
might be linked to the models’ simplicity, limited predictor variables, and the inherent
complexity of the landscape. Future investigations could explore how incorporating more

predictor variables might impact AOA results.

Despite these challenges, combining irrigation hotspots and AOA remains a promising
strategy to refine the accuracy of predictive maps and support informed decision-making.
Additional research is necessary to ascertain the optimal prerequisites for AOA models,
encompassing landscape complexity, training data size, and predictor variables, to facilitate
more precise predictions of irrigated agriculture. These improved predictions can give
valuable insights into irrigation trends, aid policy formulation, and reduce the necessity for

extensive field visits.
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2. Reflections and directions for further research

2.1. Mapping smallholder irrigation on larger scales

While I used the four regions of Mozambique as case studies, the conclusions drawn from this
research apply to the broader irrigation sector in Mozambique and the rest of Africa. To cover
a wide range of climatological, geographical and societal diversity, I intentionally modelled
four distinct regions to capture as much variety as possible and reflect the broader African
context. However, it is essential to note that small-scale irrigation practices developed by
farmers themselves exist other than the furrows in mountainous areas and petrol pumps
and canals in flatter regions of Mozambique, such as spate irrigation in Sudan (Fujihara
et al., 2020), urban irrigation in Ghana (Drechsel & Keraita, 2014) or wetland reclamation
in Malawi (Veldman, 2012). Although anecdotal, many more examples can be found, and

multiple forms of irrigation exist in the same area and country.

Consequently, agricultural areas under these other practices may not be “seen” by the models
used in this thesis, highlighting the need for further exploration beyond the scope of this
research. As highlighted in Chapter 5, there is a trade-off between developing a model that
accurately identifies irrigation in a small area versus one that can generalise well enough to

be applied to larger regions.

Although the models may not apply to larger areas, the methods and concepts can be. A next
step in developing this approach is using them on a regional or country-wide scale, which will
likely lead to different challenges than the ones explored on a smaller scale, such as managing

large datasets, cloud computing, and how to be sure all irrigation practices are included.

2.2. More computational expensive methods

Taking a practical approach, my thesis focused on relatively simple methods that do not
require extensive computational resources. While the results were satisfactory, they may not
represent the best possible outcome. One avenue not extensively explored in this research
involves more advanced classification techniques, including deep learning, object-based
methods, and complex time series analysis. These methods often require abundant training
data, which was not readily available for this study. To fully harness the potential of these
approaches, extensive field data campaigns would be needed to gather the necessary training
samples and explore cloud computing for its analysis. Such endeavours present promising
avenues for future research. They could enhance the accuracy and robustness of identifying

irrigated agriculture in a more advanced and computationally intensive manner.
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2.3.  Other spatial resolution

When considering further research avenues, exploring the potential benefits and drawbacks
of utilising different satellite data sources is important. While the Sentinel data used in
this study offered open-source accessibility and satisfactory resolution, incorporating
higher resolution imagery, such as from Planet data, could provide other advantages. The
improved level of detail from higher resolution imagery enables better identification and
differentiation of crop types, leading to more accurate mapping of irrigated agriculture.
However, it is essential to acknowledge the associated challenges, including increased costs

and greater data processing requirements, particularly for larger areas.

2.4. Other temporal resolution and variables

In Chapter 3, I examined different composite lengths spanning 12 months (1 x 12-monthly, 2 x
6-monthly, 4 x 3-monthly, and 6 x 2-monthly). The analysis revealed that not all variables and
months held the same level of importance, and the final model did not even use some. When a
modeldoes notuse a particularvariable, it suggests that the information provided by that variable
does not significantly contribute to the model’s ability to differentiate between different classes
or predict outcomes accurately. Mostly, the end and start of the dry season were most important
for identifying irrigated agriculture. Further research could explore the incorporation of specific
periods, such as focusing on 1) the months during the dry season, 2) a combination of the end of
the dry season (as farmers prepare for the rainy season) and the start of the dry season, or 3) the
peak irrigation month(s). By narrowing the focus to these specific periods, generating similar or

even better maps may be possible while utilising fewer satellite data.

2.5. Expanding on framework

Although the preceding sections have predominantly focused on technological aspects, there
isan opportunity for additional research relating to the framework to make modelling choices
explicit, as outlined in Chapter 2. One potential avenue for further exploration involves
conducting interviews with authors to investigate their decision-making process and assess
their level of consciousness regarding the subjective nature of their choices. Such interviews
could offer valuable insights into the factors influencing their methodology, enriching our
understanding of the subjectivity inherent in the mapping process. Additionally, it would be
worthwhile to further explore the incorporation of additional classification steps to enhance

the accuracy and refinement of the mapping process.

2.6. Interaction between farmer and map user

Maps can influence how we perceive and interact with our surroundings. That means that
maps inherently possess a political dimension and do not simply mirror reality and hold
significant power in shaping perceptions and influencing the division and allocation of space
(Bennett et al., 2022).
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Critical RS (Bennett et al., 2022) is emerging as a field of study that takes a step back to
evaluate remote sensing and considers both who uses satellites for observation and those
being observed. It asks questions such as: Who determines who can access the data? Are
data being used to directly overcome ground access that would otherwise be unfeasible
for political or other reasons? Is this study reinforcing or dismantling an existing power

structure? (Luna-Cruz, 2021)

A further research direction is on applying the critical RS concept to mapping smallholder
irrigated agriculture and investigating how farmers are affected by those irrigation maps. The
study could focus on how policy based on maps affects opportunities for different farmers
(e.g., their differentiated access to inputs, markets, knowledge, and funding), if they get a
voice in local politics or what happens to their and their fields’ privacy. Considering all the
conscious and unconscious biases explored in this study (Figure 1), officials and technicians
may acknowledge the numbers from the maps and the practices initiated by smallholder
farmers. However, they may also reject them to avoid legitimising their practices or justify
measures to limit farmer-led irrigation development due to perceived adverse effects on
water resources (Venot et al., 2021).

3. Concluding remarks

The remote sensing-based land use/land cover (LULC) classification field has become more
accessible and widespread due to various factors. These include the availability of open-
source software like QGIS and R, open data policies by organisations such as Landsat,
MODIS, and Sentinel, and the emergence of cloud computing platforms like Google Earth
Engine and Digital Earth Africa. Additionally, online tutorials and platforms like GitHub have
made RS techniques more accessible and widely adopted. This accessibility has empowered
individuals and smaller groups who previously lacked the resources to engage in mapping
activities. However, by now, it is clear that the diversity of methods and (research) objectives
used in creating these maps poses a challenge: it is not always straightforward what methods

to use or not, what to report on, and extrapolating the results to other cases.

The question of the added value of RS arises, particularly because field data are still
indispensable in the context of smallholder agriculture, characterised by its inherent
heterogeneity. Considering the intrinsic uncertainty and inaccuracies, one might question
the rationale behind investing considerable efforts in making maps with remote sensing
data if field visits are still required for model training and validation. However, RS does offer
several advantages despite the need for field data.
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Chapter 6 - General discussion

Firstly, it provides broader spatial coverage, allowing for identifying and monitoring trends
and patterns over large areas that would be challenging to achieve solely through field visits.
It is a cost-effective means for obtaining a general overview of the agricultural landscape

based on initially collected data.

Secondly, remote sensing can aid in prioritising field visits and optimising resource
allocation. By identifying potential hotspots or areas of interest through maps and satellite
imagery, field visits can be targeted to specific locations where further data collection,
validation, and policy refinement are needed. This approach helps to make the most efficient

use of limited resources, maximising the impact of interventions.

Finally, remote sensing can assist in providing historical data and long-term monitoring,
enabling the analysis of changes and trends over time. This information is valuable for
understanding the dynamics of agricultural systems, identifying drivers of change, and
informing evidence-based decision-making. By combining remote sensing with ground-
truthing data, models and algorithms can be refined and improved, leading to more accurate
and reliable predictions and assessments.

Ultimately, RS-based maps are just tools, and it is up to the people who use them to determine
how they will be used. Policymakers can make maps of irrigated agriculture and use them as
they see fit. However, the ease with which maps can be made nowadays means that farmers
can also get a voice by making alternative maps using equally scientifically sound principles
that reflect the perspectives and interests of the local community, challenging dominant

narratives and power structures.
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Summary

In recent years, there has been a renewed interest in irrigation in sub-Saharan Africa (SSA)
due to the need for agricultural development and food security. Expanding irrigation is
necessary to meet the region’s food requirements with the projected population growth.
Smallholder farmers have long been driving irrigated agriculture in SSA for a long time
through farmer-led irrigation development (FLID). Farmers have independently initiated,
operated, and maintained irrigation infrastructure, often focusing on high-value cash crops
to improve their income. However, FLID often goes unnoticed by official institutions due
to its fragmented nature and the technical bias in defining irrigation. The small scale and
heterogeneity of FLID make it challenging to accurately count and report official statistics.
Moreover, the practices of smallholder farmers are sometimes considered inferior or

irrelevant compared to “modern” irrigation technologies.

Similar challenges arise when mapping with remote sensing (RS) due to the complex and
diverse nature of these systems. Several factors contribute to the difficulty in accurately
measuring and classifying irrigated agriculture using satellite sensors. These factors include
the similarity in spectral signatures between different land cover classes, mixed spectral
signatures within the same land cover class, complex shapes and arrangements of fields, and
subjective definitions of irrigation.

Despite these challenges, RS offers several advantages for mapping irrigated agriculture.
It provides wide spatial coverage, allows monitoring of temporal and spatial trends, and
assists in prioritizing field visits. RS data can be consistently analysed over time and is easily
accessible. Different classes of irrigated agriculture can be distinguished by considering
factors such as the timing of image acquisition, variations in vegetation colour, and notable

changes.

This thesis aims to examine the production of remote sensing maps and their ability to depict
irrigated agriculture. While remote sensing cannot directly measure farmer-led irrigation,
it can capture the diverse and dispersed nature of small-scale irrigated agriculture, which
requires interpretation through fieldwork and local expertise. The research identifies and
addresses potential challenges in mapping irrigated agriculture in SSA using remote sensing
data.

The research uses four case studies in Mozambique, specifically Chokwe, Xai-Xai, Manica,

and Catandica, chosen for their diverse agroecological characteristics and the presence of

both small-scale and large-scale irrigated agriculture.
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In Chapter 2, I look at common RS classification steps that all mapping studies go through.
I developed a framework to explicitly address and assess modelling choices, covering seven
steps that all classification studies typically go through. The framework aims to evaluate
the reproducibility of results across different studies. The primary results highlight two key
findings. Firstly, the study demonstrates and systematizes the impact of different choices on
the classification process. Secondly, it reveals a concerning culture of insufficient reporting
on eight crucial choices. The lack of reporting in these eight domains suggests a potential lack
of awareness among map makers regarding the significance of their methodological choices
in accurately defining the extent of irrigated agriculture and reproducibility. Consequently,
the produced maps likely underreport the full extent of irrigated agriculture, especially that
of smallholder farmers.

In Chapter 3, I examined how different algorithms and composite lengths affect the
accuracy of predicting irrigated agriculture in Mozambique. Composites are commonly
used to generate cloud-free and spatially consistent images from satellite time series by
aggregating summary measures from the time series, such as the mean pixel value. Creating
composites on a monthly, seasonal, or annual basis can effectively capture vegetation
phenology. Specifically, I evaluated how four classifiers (the random forest (RF), support
vector machine (SVM), artificial neural networks (ANN), and k-nearest neighbours (k-NN))
and four composite lengths (1 x 12-monthly, 2 x 6-monthly, 4 x 3-monthly, and 6 x 2-monthly)
classified irrigated agriculture. I present the results using “agreement maps” that illustrate
the consensus among the models regarding the classification of an area as irrigated
agriculture or non-irrigated. These maps highlight the presence of core areas of irrigated
agriculture, known as hotspots, which exhibit a high level of certainty. Surrounding these
hotspots is an uncertainty zone where the models exhibit less agreement. These maps can
combine the strengths of multiple models and reduce the possibility of false positives (areas

incorrectly classified as irrigated agriculture).

I found that artificial ANN, SVM, and RF all performed effectively in classifying irrigated
areas. However, there was no single “best” algorithm. For complex and heterogeneous
landscapes, shorter composites are found to be more suitable. Conversely, longer composites
are sufficient for more uniform landscapes. Promising options, such as 6-month and 3-month
composites, offer advantages in reduced computation time and data size while still achieving
high classification accuracy. My analysis demonstrates that combining models with different
composite lengths and algorithms into agreement maps improves the accuracy of identifying
irrigated agriculture.

Chapter 4 centres on the impact of training sample size and composition on the accuracy
of RS classification for mapping smallholder irrigated agriculture in SSA. In particular, I
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investigate the optimal number of samples, their quality, and the class imbalance issue.
Collecting extensive and high-quality training samples presents difficulties due tolimitations
in time, access and interpretability. As a result, class imbalance, where certain classes are
more abundant in the training data, can lead to challenges in accurately classifying minority
classes. The available sample size can affect the choice of algorithm, as some algorithms
require a larger dataset than others. These challenges are particularly relevant in the context
of smallholder irrigated agriculture, as it is often underrepresented in datasets and policies.
In addition to the dataset’s size, training data biases can affect classification outcomes.
These biases can arise from limited local knowledge, mislabelling, and the human aspect of

interpretation.

The various explored scenarios of Chapter 4 show that larger sample sizes generally improve
user and producer accuracies; these are class-specific accuracies that can be used to show
if that class is over- or underestimated. However, there is a point of diminishing returns
where further increases in sample size only marginally increase accuracy and require
more resources. The study also reveals that models trained on Gaza perform better overall,
indicating a more generalized model compared to the overfitting observed in Manica; in
other words, the Gaza model was better able to predict all classes without much preference
towards single classes. In contrast, the Manica model favoured irrigated agriculture more
than other classes. Other scenarios highlight the importance of collecting representative
field data and using suitable algorithms, such as RF and SVM, which are less sensitive to

specific dataset characteristics compared to the ANN.

Chapter 5 investigates whether transferring models between regions can improve model
performance and save resources compared to collecting new data. I hypothesize that
targeted data collection is necessary in the new area since the relationships between spectral
responses and land covers learned in one area may not apply due to variations in weather
conditions, landscapes, and farming practices. Instead of random data collection, I focused

on identifying areas with high prediction errors to guide targeted data collection efforts.

Various models were trained on data from different scenarios to investigate the potential
transferability of machine learning models for predicting irrigated agriculture. The study
found that simple transfers of models were not effective in correctly classifying new areas
due to insufficient training data. However, incorporating more diverse data from multiple
regions improved the classification performance. Unsurprisingly, the best results were

achieved when using only data from the target area, excluding data from other areas.

To conclude, the field of remote sensing-based land use/land cover classifications has been

democratised due to various factors, including the availability of open-source software like
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QGIS and R, open data policies by organizations such as Landsat, MODIS, and Sentinel,
as well as the emergence of cloud computing platforms like Google Earth Engine and
Digital Earth Africa. Additionally, online tutorials and platforms such as GitHub have
made RS techniques more accessible and widely adopted. This accessibility has empowered
individuals and smaller groups who previously lacked the resources to engage in mapping
activities. However, the diversity of methods and (research) objectives used in creating these
maps poses a challenge: it is not always straightforward what methods to use or not, what
to report on, and extrapolating the results to other cases. The results of this research have
implications for documenting and reporting of methods and choices, presenting irrigated
agriculture through maps, and showing how easy it is to manipulate those maps with slight
tweaks to models.
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De afgelopenjarenis er hernieuwde interesse ontstaan in irrigatie in Afrika ten zuiden van de
Sahara (SSA -sub-Saharan Africa) vanwege de groeiende noodzaak van landbouwontwikkeling
en voedselzekerheid. De uitbreiding van irrigatie is cruciaal om te kunnen voldoen aan
de verwachte bevolkingsgroei en de groeiende voedselbehoefte in de regio. Kleinschalige
boeren spelen al lange tijd een leidende rol in geirrigeerde landbouw in SSA, voornamelijk
door middel van door boeren geleide irrigatieontwikkeling (FLID — Farmer-Led Irrigation
Development). Deze boeren hebben zelf het initiatief genomen voor het opzetten, exploiteren
en onderhouden van irrigatie-infrastructuur, vaak gericht op hoogwaardige gewassen om
hun inkomens te verbeteren. Ondanks deze belangrijke bijdrage wordt FLID vaak over het
hoofd gezien door officiéle instanties vanwege de versnipperde aard en technologische
vooringenomenheid bij de definitie van irrigatie. De kleinschaligheid en diversiteit van
FLID maken het uitdagend om nauwkeurige statistieken te verzamelen en te rapporteren.
Bovendien worden de praktijken van kleinschalige boeren soms als minderwaardig of

irrelevant beschouwd in vergelijking met “moderne” irrigatietechnologieén.

Vergelijkbare uitdagingen doen zich voor bij het gebruik van remote sensing (RS) voor het in
kaart brengen van geirrigeerde gebieden, vanwege de complexe en diverse aard van deze
agrarische systemen. Diverse factoren bemoeilijken het nauwkeurig meten en classificeren
van geirrigeerde landbouw met behulp van satellietsensoren. Enkele van deze factoren zijn de
gelijkenis in spectrale signalen tussen verschillende klassen van landbedekking, gemengde
spectrale signalen binnen dezelfde klassen van landbedekking, ingewikkelde vormen en

indelingen van velden, en subjectieve definities van irrigatie.

Desondanks biedt RS diverse voordelen voor het in kaart brengen van geirrigeerde landbouw.
Het levert een uitgebreide ruimtelijke dekking, maakt de monitoring van zowel temporele
als ruimtelijke trends mogelijk, en ondersteunt bij het prioriteren van veldbezoeken. RS-
gegevens kunnen consistent worden geanalyseerd in de loop van de tijd en zijn gemakkelijk
toegankelijk. Door rekening te houden met factoren zoals het tijdstip van beeldopname,
variaties in de kleur van de vegetatie en opvallende veranderingen, kunnen verschillende

klassen van geirrigeerde landbouw worden onderscheiden.

Deze dissertatie onderzoekt de productie van kaarten met RS en hun vermogen om
geirrigeerde landbouw weer te geven. Hoewel RS niet direct FLID kan meten, kan het wel
de diverse en verspreide aard van kleinschalige geirrigeerde landbouw vastleggen, waarvoor
interpretatie vereist is door middel van veldwerk en lokale expertise. Het onderzoek
identificeert en behandelt potentiéle uitdagingen bij het in kaart brengen van geirrigeerde
landbouw in SSA met behulp van RS gegevens.
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Deze studie maakt gebruik van vier casestudies in Mozambique, namelijk Chokwe, Xai-
Xai, Manica en Catandica. Deze locaties zijn geselecteerd vanwege hun gevarieerde agro-
ecologische kenmerken en de aanwezigheid van zowel kleinschalige als grootschalige

geirrigeerde landbouw.

In hoofdstuk 2 onderzoek ik de gemeenschappelijke stappen die alle karteringsstudies
doorgaan bij de classificatie van RS kaarten. Ik heb een raamwerk ontwikkeld dat
expliciet ingaat op en beoordeelt welke keuzes in modellen worden gemaakt, bestaande
uit zeven stappen die typisch zijn voor classificatiestudies. Het doel van dit raamwerk is
om de reproduceerbaarheid van resultaten tussen verschillende studies te evalueren. De
belangrijkste bevindingen benadrukken twee cruciale punten. Ten eerste toont de studie aan
hoe verschillende keuzes het classificatieproces beinvloeden en systematiseert deze impact.
Ten tweede brengt het een zorgwekkend gebrek aan rapportage aan het licht met betrekking
tot acht essentiéle keuzes. Het ontbreken van gedetailleerde verslaglegging over deze acht
gebieden duidt op mogelijk onvoldoende bewustzijn bij de makers van de kaarten over het
belang van hun methodologische keuzes voor een nauwkeurige definitie van de omvang
van geirrigeerde landbouw en reproduceerbaarheid. Hierdoor is het waarschijnlijk dat de
geproduceerde kaarten een onderschatting geven van de volledige omvang van geirrigeerde

landbouw, met name die van kleine boeren.

In hoofdstuk 3 heb ik onderzocht hoe verschillende algoritmen en samengestelde lengtes de
nauwkeurigheid beinvloeden bij het voorspellen van geirrigeerde landbouw in Mozambique.
Composieten worden vaak gebruikt om wolkenvrije en ruimtelijk consistente beelden
te genereren uit satelliettijdreeksen door samenvattende maten uit de tijdreeksen te
aggregeren, zoals de gemiddelde pixelwaarde. Het maken van composieten op maand-,
seizoens- of jaarbasis kan de vegetatiefenologie effectief vastleggen. In het bijzonder heb
ik geévalueerd hoe vier classificeerders (het random forest (RF), de support vector machine
(SVM), kunstmatige neurale netwerken (ANN) en k-nearest neighbours (k-NN)) en vier
samengestelde lengtes (1 x 12-maandelijks, 2 x 6-maandelijks, 4 x 3-maandelijks en 6 x
2-maandelijks) geirrigeerde landbouw classificeerden. De resultaten worden gepresenteerd
aan de hand van “akkoordkaarten” (agreement maps) die de consensus tussen de modellen
illustreren met betrekking tot de classificatie van een gebied als geirrigeerde landbouw
of niet-geirrigeerd. Deze kaarten benadrukken de aanwezigheid van kerngebieden van
geirrigeerde landbouw, bekend als hotspots, die een hoge mate van zekerheid vertonen.
Rondom deze hotspots bevindt zich een onzekerheidszone waar de modellen minder
overeenstemming vertonen. Deze kaarten kunnen de sterke punten van meerdere modellen
combineren en de kans op fout-positieven (gebieden die ten onrechte geclassificeerd zijn als

geirrigeerde landbouw) verkleinen.
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Ik ontdekte dat ANN, SVM en RF allemaal effectief presteerden bij het classificeren van
geirrigeerde gebieden. Er was echter geen enkel “beste” algoritme. Voor complexe en
heterogene landschappen bleken kortere composieten geschikter te zijn, terwijl omgekeerd
langere composieten voldoende waren voor meer uniforme landschappen. Veelbelovende
opties, zoals 6-maands en 3-maands composieten, boden voordelen in termen van kortere
rekentijd en gegevensomvang, terwijl nog steeds een hoge classificatienauwkeurigheid
werd behouden. Mijn analyse toont aan dat het combineren van modellen met verschillende
samengestelde lengtes en algoritmes in akkoordkaarten de nauwkeurigheid van het

identificeren van geirrigeerde landbouw verbetert.

Hoofdstuk4richtzichopdeinvloedvandeomvangensamenstellingvantrainingssteekproeven
op de nauwkeurigheid van RS -classificatie voor het in kaart brengen van kleinschalige
geirrigeerde landbouw in SSA. Specifiek onderzoek ik het optimale aantal data, hun
kwaliteit en het probleem van ongelijk verdeelde klassen. Het vergaren van uitgebreide
trainingsdata van hoge kwaliteit is uitdagend vanwege beperkingen in tijd, toegang en
interpreteerbaarheid. Hierdoor kan klasse-onbalans, waarbij bepaalde klassen meer
vertegenwoordigd zijn in de trainingsgegevens, problemen veroorzaken bij het nauwkeurig
classificeren van minderheidsklassen. De beschikbare steekproefgrootte kan de keuze van
het algoritme beinvloeden, aangezien sommige algoritmen een grotere dataset vereisen dan
andere. Deze uitdagingen zijn vooral relevant in de context van kleinschalige geirrigeerde
landbouw, omdat deze vaak ondervertegenwoordigd is in datasets en beleidsdocumenten.
Naast de grootte van de dataset kunnen vertekeningen in de trainingsgegevens de resultaten
van de classificatie beinvloeden. Deze vertekeningen kunnen voortkomen uit beperkte lokale

kennis, onjuiste labels en het menselijke aspect van interpretatie.

De verschillende onderzochte scenario’s in hoofdstuk 4 laten zien dat over het algemeen
grotere steekproeven de gebruikers- en producentennauwkeurigheid verbeteren, waarbij
deze nauwkeurigheden klasse specifiek zijn en kunnen worden gebruikt om aan te tonen
of een klasse over- of onderschat is. Er is echter een punt van afnemende meeropbrengst
waar verdere verhogingen van de steekproefomvang de nauwkeurigheid slechts marginaal
verbeteren en meer middelen vereisen. Het onderzoek toont ook aan dat modellen getraind
op de regio Gaza over het algemeen beter presteren, wat duidt op een meer gegeneraliseerd
model in vergelijking met de overaanpassing die werd waargenomen in de regio Manica. Met
andere woorden, het Gaza-model was beter in staat om alle klassen zonder voorkeur voor
afzonderlijke klassen te voorspellen. Het Manica-model gaf daarentegen meer de voorkeur
aan geirrigeerde landbouw dan aan andere klassen. Andere scenario's benadrukken het
belang van het verzamelen van representatieve veldgegevens en het gebruik van geschikte
algoritmen, zoals RF en SVM, die minder gevoelig zijn voor specifieke kenmerken van de
dataset in vergelijking met het ANN.
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Hoofdstuk 5 onderzoekt of het overbrengen van modellen tussen regio’s de modelprestaties
kan verbeteren en middelen kan besparen in vergelijking met het verzamelen van nieuwe
gegevens. 1k veronderstel dat gerichte datacollectie noodzakelijk is in het nieuwe gebied,
aangezien de relaties tussen spectrale responsen en bodembedekkingen die in het ene gebied
zijn geleerd, mogelijk niet van toepassing zijn vanwege variaties in weersomstandigheden,
landschappen en landbouwpraktijken. In plaats van willekeurige gegevensverzameling heb
ik me gericht op het identificeren van gebieden met hoge voorspellingsfouten om gerichte
gegevensverzameling te sturen.

Verschillende modellen werden getraind op gegevens uit verschillende scenario’s om de
potentiéle overdraagbaarheid van machinaal leren modellen voor het voorspellen van
geirrigeerde landbouw te onderzoeken. Uit het onderzoek bleek dat eenvoudige overdrachten
van modellen niet effectief waren in het correct classificeren van nieuwe gebieden vanwege
onvoldoende trainingsgegevens. Het toevoegen van meer diverse gegevens uit meerdere
regio’s verbeterde echter de classificatieprestaties. Het was dan ook geen verrassing dat
de beste resultaten werden behaald wanneer alleen gegevens uit het doelgebied werden
gebruikt, met uitsluiting van gegevens uit andere gebieden.

Concluderend kan worden gesteld dat het veld van op RS gebaseerde classificaties van
landgebruik en bodembedekking gedemocratiseerd is door verschillende factoren. Onder
andere de beschikbaarheid van open source software zoals QGIS en R, het open data beleid
van organisaties zoals Landsat, MODIS en Sentinel, en de opkomst van cloud computing
platforms zoals Google Earth Engine en Digital Earth Africa hebben hieraan bijgedragen.
Daarnaast hebben online tutorials en platforms zoals GitHub RS-technieken toegankelijker
gemaakt en op grote schaal verspreid. Deze toegankelijkheid heeft individuen en kleinere
groepen die voorheen niet over de middelen beschikten om aan karteringsactiviteiten deel te

nemen, meer mogelijkheden geboden.

De diversiteit aan methoden en onderzoeksdoelen die worden gebruikt bij het maken van
deze kaarten vormt echter een uitdaging. Het is niet altijd duidelijk welke methoden wel of
niet gebruikt moeten worden, waarover gerapporteerd moet worden en hoe de resultaten
geéxtrapoleerd kunnen worden naar andere gevallen. De resultaten van dit onderzoek
hebben implicaties voor het documenteren en rapporteren van methoden en keuzes, het
presenteren van geirrigeerde landbouw door middel van kaarten, en het laten zien hoe

gemakkelijk het is om die kaarten te manipuleren met kleine aanpassingen aan modellen.
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